Las cuatro palancas del macerado

Todas las fases del proceso de elaboración de cerveza son igual de importantes, pero si hay uno que por su complejidad y variabilidad es clave, es el macerado. Aunque es bien cierto que, sobre todo cuando empiezas, te basta con “intentar no estropear nada”, poco a poco es conveniente profundizar en lo que ocurre cuando mezclas agua y grano.
Según consigues más control del equipo y de la teoría cervecera, te das cuenta de que en la etapa de macerado hay un gran campo donde investigar y un punto de mejora fundamental. Sinceramente, opino que si sabemos lo que ocurre dentro de tu macerador y lo entendemos, aunque sea de manera superficial, podemos tener más campo de juego a la hora de diseñar nuestras recetas y elaborarlas.
En este artículo vamos a dar un repaso a lo que ocurre cuando juntamos nuestra malta molida con el agua calentita y a intentar comprender cómo podemos manejarlo para favorecer los resultados de nuestra cerveza casera.
Este post no se va a encargar de la manera mecánica o práctica de cómo operar el macerado. Es decir, no va a hablar de métodos de lavado o si es mejor un HERMS, o un RIMS, o cómo hacer el recirculado perfecto. Va a hablar de la teoría que se encierra en el macerado, verá el resultado de algún experimento en la práctica y expondrá las variables de las que disponemos los jombrigüeres para que luego, cada cual, haga de su capa un sayo.
Y es necesario aclarar que durante todo el post nos referimos a macerados por infusión simple. Dejamos de lado la decocción, y casi de lado los macerados con escalones de temperatura o los macerados asistidos y cualquier otro tipo de mezcla de los ya nombrados… Vamos a lo simple, que ya habrá tiempo de complicarse.

El concepto simple

Si tuvieras que explicar qué es el macerado a tu abuela, obviando tecnicismos y factores variables, podríamos decir que el macerado consiste en ‘extraer’ los azúcares que hay en la malta (y otros adjuntos) y conseguir diluirlos en agua. Este caldo o sopa de cereales azucarada (no dejéis de probar todos los mostos que consigáis) se denomina “mosto”, en analogía con el jugo de la uva cuando la exprimes, antes de fermentarse y tener vino.
La comparación con el vino a veces resulta muy gráfica. Casi todo el mundo entiende que si aplastas las uvas y pones a fermentar el zumo resultante (lleno de azúcares), cosa que basta con mezclarlo con la propia piel de la uva (llena de levaduras salvajes), acabas teniendo vino. No estoy diciendo si consigues un vino de buena calidad, pero acabas teniendo vino. Dado que la cerveza también es una bebida alcohólica fermentada y que si aplastamos la cebada no sale ningún jugo (al contrario que con las uvas), tenemos que añadirlo a un medio líquido para obrar el milagro.
Sin embargo, aquí es cuando la cosa empieza a complicarse, ya que entran en juego muchos factores que van a influir en el resultado, a favor o en contra. Desde la composición propia del agua, de la propia malta, de las temperaturas, del ratio agua/malta y del propio tiempo en el que ocurre todo esto, entre otras cosas, vamos a conseguir un mosto de uno u otro tipo.
De manera simplista, podemos decir que dentro de la malta nos encontramos con una gran cantidad de almidón por un lado, y con cierto contenido de diferentes enzimas, por el otro. Gracias a nuestra intervención, hidratando la malta con agua caliente, vamos a conseguir activar esas enzimas, las cuales están “programadas” para descomponer el almidón en azúcares más simples (cadenas más cortas de azúcares), que finalmente, podrán servir como alimento de las levaduras durante la fermentación.
Una definición igual de simple pero más acertada sería que lo que vamos a hacer mediante el macerado, es convertir los almidones que están en los cereales a macerar (no solo malta o cebada, sino también maíz, avena, trigo, arroz…) en azúcares que sean fermentables, esto es, que la levadura pueda usarlos para fermentar. Y esta “conversión” solo ocurrirá mediante un proceso llevado a cabo por enzimas que de manera natural se encuentran en la malta.

Complicando el concepto

Empecemos por resaltar un hecho notable: en los tiempos que corren, las malterías han avanzado mucho su conocimiento de los procesos y las técnicas actuales permiten producir maltas muy efectivas a la hora de hacer un macerado. A estas maltas se les conoce como “maltas bien modificadas”, y facilitan mucho la labor del cervecero, que tiende a despreocuparse de ciertas problemáticas que había en el pasado. Por esta cuestión, muchas de las publicaciones más clásicas acerca de elaborar cerveza en casa están un poco obsoletas. Y esto incide en los procesos de hoy.
Hace siglos, las maltas no estaban tan modificadas y podemos decir que había que “acabar de modificarlas” durante el macerado. Eso implicaba algún paso que otro que en la actualidad podemos obviar. Si te atrevieras a maltear cebada en casa, probablemente no lo harías tan bien como una maltería y tendrías que preocuparte de averiguar qué pasos hacían los cerveceros clásicos para complementar un malteado ineficaz. Nos vamos a permitir del lujo de dejar de lado pasos engorrosos como la degradación de los betaglucanos y de las proteínas.
A modo de curiosidad, podemos decir que se hacían varios escalones a bajas temperaturas (35 °C, 45 °C,  55 °C) para activar enzimas desramificadoras y proteínas que beneficiarán los procesos que están por llegar. Las enzimas que actúan en ese rango bajo de temperaturas se conocen como proteasas, y centran su actividad en las proteínas del mosto.
Otro tipo de enzimas, conocidas como amilasas, nos van a dar mejores satisfacciones y son las que se van a llevar todo nuestro amor y todo nuestro cariño.

Las enzimas amilasas

Nuestras “más mejores” amigas durante el macerado van a ser dos enzimas concretas, que van a pilotar casi todo el proceso (y pongo “casi todo el proceso” porque además de que poner “todo” es inexacto, tengo miedo de que un cervecero fanático me escriba un e-mail poniéndome de vuelta y media), que son las alfa-amilasas y la beta-amilasas. En realidad, son proteínas y son unas auténticas picadoras, cortadoras, desmenuzadoras, acuchilladoras y destrozadoras de almidones.

  • La alfa-amilasa trabaja más cómoda en rangos de temperatura más altos que su prima la beta-amilasa, y convierte el almidón en dextrinas. Estas dextrinas son cadenas largas de azúcares que pueden ser no digeribles por la levadura. Un mosto “dextrinoso” es un mosto macerado en un rango de temperatura alto, cercano a los 70 °C y que (teóricamente) va resultar en una cerveza con un dulzor residual, compuestos complejos de sabor derivados de estos azúcares y con cuerpo.
  • La beta-amilasa trabaja mejor en un rango de temperatura más bajo que las alfa-amilasas, y pulveriza partes del almidón y de las dextrinas que ha fabricado la alfa-amilasa en azúcares sencillos, como la maltosa, fácilmente asimilable por la levadura. Es favorecida por empastes ligeros. Se desactiva alrededor de los 70 °C. En rangos generales, cuánto más baja sea la temperatura del macerado, más fermentable será el mosto y la cerveza resultante, más seca.

Aquí llega entonces el primer cisma del macerado. En las guías para principiantes, siempre se aconsejan distintos rangos de temperatura de macerado… que si entre 66-68 °C, que si 63-67 °C, que si 65-66 °C…. Si bien es cierto que a un jombrigüer novato no vas a calentarle la cabeza con todos estos factores, también es verdad que llega el momento de ver un poco más con detalle qué ocurre en el macerado.
A alguien que empieza, lo que más le gusta es ver a su airlock borbotear como un adolescente que acaba de descubrir una plataforma gratuita de videos eróticos en internet. Y dejarse, por el momento, de alfa-amilasas, betaglucanos, dextrinas y pH. Pero si con el tiempo no avanzas, el perfil de las cervezas que vayas elaborando será muy parecido, en cuanto a cuerpo. No hay nada malo en eso, pero hay que tener en cuenta que no todos los estilos tienen el mismo cuerpo, y lo mucho que favorece un cuerpo pleno a ciertos estilos contundentes…
Si queremos jugar con el cuerpo de las cervezas (azúcares residuales, o densidades finales más altas) o con sabores más complejos provenientes de la malta, tendremos que favorecer el trabajo de la alfa-amilasa y dificultar el de la beta-amilasa. Veremos, además, que esto no es tan fácil hoy en día por las maltas modernas y la alternativa.
Como veremos muy pronto, hay cuatro factores qué podemos modificar para ajustar nuestro macerado. Un factor es el tiempo de macerado, otro, el rango de temperatura, el tercero sería el pH, y el cuarto, el ratio agua:grano del empaste.
Hay que dejar claro desde un principio que, aunque las condiciones no sean del todo óptimas para una enzima, no quiere decir que la enzima no siga trabajando. No son enzimas cuadriculadas, que funcionan a golpes de resortes, ni sindicalistas. Seguirán actuando, pero de manera más lenta, por lo que la enzima que tenga las condiciones más favorables será la que actúe de manera notable.

Don Almidón y Doña Dextrina

   Hemos hablado tanto de almidones como de dextrinas, pero no hemos explicado, al menos de forma orientativa, lo que son.
A lo bruto, podemos decir que el almidón no es otra cosa que un montón de azúcares, sencillos y no tan sencillos, unidos entre sí. Si el almidón se hubiera descubierto hoy, los científicos le hubieran bautizado como “azucarako” y lo hubieran definido como “algo petado de glucosas todas juntas y apelotonadas”.
El almidón de la malta se encuentra en dos formas (que la gente que es muy lista, los llama “polímeros de glucosa”), una de ellas es la amilosa (un 25%) y la otra, la amilopectina (el otro 75%). La amilosa son cadenas largas de glucosa no ramificadas, mientras que las amilopectinas son más complejas, puesto que las cadenas de glucosa sí están ramificadas (tienen forma de árbol). La beta-amilasa y las alfa-amilasas van a atacar a cada uno de los almidones de manera diferente, pero el resultado serán cadenas de más cortas de azúcares.
Los textos más avanzados sobre la química del macerado te explican con detenimiento los enlaces de la molécula de glucosa de almidón que es atacada por cada enzima y ponen muchas palabras con muchas letras, pero creo que lo mejor es una visión pragmática del asunto (y divertida, dentro de lo que cabe). Esto es, que hay que tener claro que la alfa-amilasa va a romper el almidón en cadenas más cortas de azúcares, de los cuales muchos serán fermentables, pero también va a crear dextrinas, que no lo son tanto. En cambio, la beta-amilasa, va a actuar en los finales de las cadenas de azúcares, rompiéndolas en cadenas muy cortas (como, por ejemplo, dos azúcares, o sea, disacáridos, como la maltosa).

4P_01_Amilopectina a glucosa

Así, al final del todo tendremos un mosto lleno de azúcares simples (monosacáridos como la glucosa), de disacáridos (dos azúcares, como por ejemplo, dos glucosas juntas, que se conocen como “maltosa”), algunas cadenas de trisacáridos (tres glucosas juntas, conocidas como “maltrotriosa”) y las ya archifamosas dextrinas, que son cadenas de azúcares más largas, menos digeribles por la levadura, por lo que no van a fermentar bien y una parte (más grande o más pequeña) se van a quedar en el mosto, añadiendo complejidad y cuerpo a la cerveza.
Por tanto, en realidad, el macerado se trata de bajar y subir palancas imaginarias de nuestra máquina imaginaria para ajustar las proporciones de azúcares fermentables y dextrinas, y conseguir la cerveza que nos proponíamos: con más o menos cuerpo, más dulce o más seca.

Y las enzimas, ¿son gratis?

Ya se ha dicho que la malta guarda en su interior las enzimas necesarias para desmontar (licuar) los almidones que también vienen con la malta… ¡un grano de malta es un kit completo! Sin embargo, conviene matizar este punto para un total entendimiento del proceso. Es necesario un cierto equilibrio/proporción entre almidones y enzimas, para lograr un macerado óptimo. Por ejemplo, en el artículo acerca de usar arroz en nuestros macerados [¡plink!] comentábamos el problema al que se enfrentaron los colonos europeos en los Estados Unidos cuando querían usar maltas de cebada americana de 6 hileras. El contenido en enzimas era demasiado, lo que provocaba efectos indeseables por dicho exceso de proteínas (como la turbidez), así que se les ocurrió el uso de arroz como fuente de almidones para compensar la proporción con las enzimas.
En el artículo titulado “El secreto está en la malta”, ya introdujimos el concepto de poder diastásico [¡plink!] o como me gusta llamarlo, el “poderío enzimático”, que habla justo esta circunstancia y que no vamos a repetir aquí, pero que conviene tener claro.
En nuestros macerados caseros, rara vez tendremos problemas como los de los colonos americanos, pero existe la posibilidad de que incluyamos un porcentaje elevado de grano sin contenido enzimático y tengamos el problema inverso: muchos almidones y pocas enzimas que los trabajen. La recomendación más extendida es no bajar la malta base (Pale/Pils) por debajo del 70%, y si lo hacemos, recordemos que otras maltas como la Munich o Vienna tienen menos enzimas, y que van teniendo aún menos cuanto más oscuras son, ya que el propio proceso de fabricación aniquila las enzimas.
Por poner ejemplos, las maltas bases pueden tener entre un 100 – 140 °L de poderío enzimático (a veces más, como la malta de 6 hileras, o a veces menos, como ciertas maltas inglesas), la Munich ronda los 70 °L, pero si está muy tostada, bajaría a los 20-30 °L. La malta chocolate, la Black y las Crystal, tienen un 0 °L, o lo que es lo mismo: no contiene enzimas.

Fases del macerado, con almidones y a lo loco

Este “proceso enzimático”, que conocemos como macerado, lo podrás leer en muchos sitios como “sacarificación”, debido a que es la palabra técnica que define al proceso de romper azúcares complejos (como el almidón) en sus compuestos más simples. Sin embargo, en realidad es el paso final del macerado, cuando ocurre el milagro y las amilasas han hecho chop-suey con el almidón.
Las fases del macerado, teniendo en cuenta el proceso químico, y no el mecánico de gestionar y mover el mosto, descritas de forma escueta, serían las siguientes:

Remojado

Donde hacemos la mezcla de malta molida y agua caliente, para ajustarlo a una temperatura o rango de temperatura concreto, y aprovechamos (una vez la mezcla se haya asentado), para medir el pH y ajustarlo si es necesario.

Gelatinización

La gelatinización llega a los oídos de los jombrigüeres tarde o temprano. En realidad, resulta un concepto familiar por la popularidad de la palabra “gelatina”, y se acopla a nuestro vocabulario de manera normal. Pero… ¿sabemos lo que es?
Cuando tienes la malta en su saco, los almidones no están disponibles, están dentro del grano, y hay que facilitar su extracción. Lo primero que hacemos es romper el grano, a través de la molienda, llenando todo de polvo, pero a la vez vamos a permitir que el “medio almidonado” del interior del grano quede expuesto.
Ahora tenemos que pensar a nivel molecular. El almidón empieza a absorber agua, por lo que se va hinchando. Esta hinchazón provocada por el agua empieza a alterar la estructura del almidón, volviéndose inestable. Si la temperatura del agua es la adecuada, el almidón acabará descomponiéndose en partes más pequeñas, así que el contenido de la molécula del almidón se “funde” con el agua (en realidad, se combina), lo que provoca cierta pastosidad consistente, como si estuviéramos haciendo unas gachas.
Con esta impresionante imagen mental, donde una molécula de almidón empieza a hincharse con el agua y se degrada hasta deshacerse por completo como la bruja del Mago de Oz, pasamos a conocer los conceptos básicos: ese punto, cuando el almidón se degrada en partes más pequeñas es lo que conoce como “temperatura de gelatinización”. Y se da la circunstancia de que cada fuente de almidón gelatiniza a temperaturas distintas. Un almidón de la malta de cebada gelatiniza entre los 63 y los 69 °C (como siempre, dependiendo del libro que mires, encontrarás variaciones en esta información), aunque el almidón de la cebada cruda, sin maltear, gelatiniza entre los 60 y los 62 °C. Otros ejemplos, serían: un almidón proveniente de la patata gelatiniza entre los 55 y los 71 °C, el del trigo entre los 52 y los 66 °C y el del arroz, pues… ¡depende del arroz!, los hay del rango 61-82, del 66-68, del 71-74…
Al fenómeno químico de que una sustancia orgánica como el almidón de descomponga por acción del agua se le denomina “hidrólisis”.

Licuefacción

Y llegados al punto donde el almidón ha sido gelatinizado, las partes más pequeñas, que son las amilosas y las amilopectinas, están libres en el agua, llega el momento de la licuefacción. La licuefacción es la fase del macerado donde entran en juego las enzimas y empiezan a partir las cadenas largas de azúcares en otras más pequeñas.

Sacarificación

El mosto es ahora un caldo lleno de dextrinas. Esto es, cadenas largas de azúcares (de incluso 10 o 20 moléculas de glucosa) que no van a poder ser metabolizadas por la levadura, así que necesitamos un nuevo paso de degradación, para conseguir esas moléculas de 1 o 2 azúcares (glucosa o maltosa). Y el proceso en sí por el cual una enzima rompe una cadena compleja de azúcares en otra más pequeña de monosacáridos o disacáridos, se denomina “sacarificación”. Es justo la parte que nos gusta manejar a los cerveceros para hacer el mosto a nuestra medida, y que está descrita con más detenimiento en otras partes del artículo.

4P_02_degradación

Las cuatro palancas

Antes nos referíamos al macerado como un juego de palancas que podemos ajustar para conseguir diferentes resultados. Pues esas palancas, en concreto, son cuatro, y sobre ellas están las siguientes etiquetas: tiempo, temperatura, pH y empaste. Si se entiende lo que ocurre en el macerado, a la hora de crear una receta, y luego, elaborarla, el jombrigüer tiene el control para poder jugar con estas palancas y conseguir la cerveza que quiera. O al menos, en teoría.

Primera palanca | El tiempo

Dando el suficiente tiempo de trabajo a las enzimas, conseguiremos un macerado más eficaz (ergo, rendimientos más altos), pero un macerado de cinco horas es bastante aburrido, y costoso de mantener (en energía, que siempre es dinero). Así que hay conseguir la conversión del almidón en azúcares simples en un tiempo razonable.4P_03_MASHING MACHINE
Evidentemente, cuanto más tiempo se emplee en el rango de temperatura óptimo para cada una de las enzimas, va a tener una potenciación de la actividad. Y dicha actividad, un efecto concreto en el mosto resultante, que no siempre va a ser positivo.
Por ejemplo, en rangos bajos de temperatura (esos que hemos dicho que es mejor olvidarnos si usamos maltas bien modificadas), un breve tiempo de actividad de las proteasas va a favorecer la claridad de la cerveza. Sin embargo, si el tiempo de actividad es prolongado, incidirá directamente en un problema en la generación de la espuma de servido. Por estas cosas es preferible no gestionar el macerado al azar, sin saber qué consecuencias tiene cada decisión.
Por tanto, un mayor tiempo dedicado al rango favorable de la alfa-amilasa va a provocar una mayor proliferación de las dextrinas, y más tiempo en rangos bajos de temperatura, favorecerá la actuación de la beta-amilasa y el mosto será más fermentable, por lo que conseguiremos una mayor atenuación al fermentar, más alcohol y una cerveza más seca.
A pesar de lo dicho, se dice que, a partir de los 60 minutos de macerado, la actividad enzimática se empieza a ralentizar, lo que no quiere decir que se detenga. Está comprobado que macerados más duraderos tienen un mejor rendimiento.
Existe un método muy rudimentario para controlar la actividad de la sacarificación, que es mediante la prueba del yodo, que vamos a comentar más adelante. Mediante esta prueba, sabrás si merece la pena alargar el macerado o ya ha transcurrido el tiempo suficiente.
Macerados muy eficientes completan la conversión en media hora, aunque lo usual y más extendido es apuntar a una hora para asegurarse una conversión completa. Como esto depende mucho de los equipos, del volumen del lote y de procesos auxiliares (como remover el empaste o recircular el mosto), no hay una guía fija que seguir y una vez más hay que recurrir a la experiencia.

Segunda Palanca | Temperatura

A estas alturas, ya sabemos de forma más que intuitiva que la temperatura del macerado incidirá de forma directa en la actividad de nuestras enzimas amigas. Además, a lo largo y ancho de internet podemos encontrar diferentes consejos acerca de cómo manejarse en este campo e incluso rangos contradictorios sobre los rangos de temperatura aconsejables para cada enzima. Además, los jombrigüeres-maniacos querrán clavar la temperatura de su macerado para lograr un clímax enzimático divino que impulse a las beta-amilasas a trabajar marcándose una coreografía grupal hasta la extenuación… Y mi consejo es no volverse muy loco. La “fluctuosidad” de los elementos de medición que tenemos en casa deja mucho que desear, así como que posiblemente, la temperatura de tu macerador no sea única en todo el volumen macerado. Es probable que la superficie tenga una temperatura, el fondo otra (sobre todo si aplicas calor por ahí) y diferentes puntos intermedios, otras distintas. Incluso, si te trabajas un sistema de recirculación continua para evitar diferentes zonas de temperatura, es probable que en realidad lo que estés consiguiendo es que la temperatura te fluctúe ciertos Celsius (o parte de ellos) de manera cíclica. Mantened la calma. Estamos haciendo cerveza en casa, las vidas de millones de personas no dependen de la temperatura de tu macerado, así que apunta a la temperatura que quieres/necesitas y hazlo lo mejor que puedas para ajustarla. Además, como veremos enseguida, dependiendo de la publicación que consultes, tendrás un baile de temperaturas y rangos que te producirá palpitaciones malsanas si lo que pretendes es controlarlo todo al dedillo. Y para rematar, veremos un par de experimentos un tanto descorazonadores.
En cualquier caso, una temperatura demasiado alta, destruirá las enzimas o las dejará inactivas (posiblemente para siempre), y una temperatura demasiado baja, no conseguirá activarlas, al menos por completo. No hay un consenso al 100% entre toda la literatura que he consultado para definir el rango concreto de temperaturas para la alfa y la beta amilasa. Si bien el rango del “escalón de sacarificación” normalmente va de 65 °C a 71 °C, ya va a depender del estilo de cerveza concretar qué temperatura (o temperaturas) usar. No es lo mismo elaborar una Scotch Ale donde buscamos cierto dulzor residual maltoso, y abusaríamos de la confianza de las alfa-amilasas, que por ejemplo, una German Altbier, donde vamos a buscar una atenuación salvaje, por lo que buscaremos un macerado “más fresquito”.
En el Radical Brewing, de Randy Mosher, por ejemplo, se dice que las alfa-amilasas trabajan en rango óptimo entre 65,5 y 71 °C, mientras que las beta-amilasas, entre 60 y 65,5 °C. Randy aconseja trabajar a 65,5 °C y mantenerlo una hora para conseguir un mosto que se convertirá en una cerveza maravillosa. Lo cual no es mal consejo (nunca puede ser malo viniendo de Randy) porque según su información, a esa temperatura actuarán tanto las alfa como las beta amilasas y nadie quisiera ser un almidón viviendo en ese empaste… John Palmer en el How to Brew [¡plink!]dice que la alfa amilasa trabaja mejor entre 67,7 y 72,2 °C, y que la beta amilasa entre 55 y 65,5 °C (siendo 67,7 °C la temperatura a la que deja de actuar).
En BeerSmithTM podemos ver [¡plink!] que recomiendan un rango total de entre 63 y 69 °C, concretando luego que el 68 – 75 °C es para la alfa amilasa, y 54-65 °C para la beta amilasa. En este artículo de Dave Green publicado en la revista Brew Your Own en 2008 [¡plink!] y titulado “The Science of Step Mashing” se dice que la beta-amilasa trabaja en rango óptimo entre 54-66 °C (con especial énfasis a los 64 °C, y quedando inactiva a los 71 °C. Respecto a la alfa-amilasa, se dice que su rango ideal sería el de 66-71 °C (mejor a 70 °C) y que a partir de 77 °C deja de trabajar.
Un último ejemplo, en el libro Brewing de Michael J. Lewis y Tom W. Young apuntan que la alfa amilasa trabaja a 70 °C (e incluso a “temperaturas más altas”) mientras que la beta amilasa trabaja en un rango de entre 55 y 60 °C, para acabar añadiendo que la alfa amilasa trabaja entre 10 y 15 °C más alto que la alfa amilasa.

4P_04_TABLA_TEMP

Podríamos seguir poniendo ejemplos de diferentes publicaciones especializadas, pero visto lo visto, mirando el cuadro resumen, tenemos suficiente información y contrastes para trabajar. Como se dice continuamente en todos los artículos del blog, lo mejor es la experimentación y la experiencia propia. Coge estos datos y aplícalos a tus elaboraciones diarias, evalúa los resultados, cambia algo para ver cómo afecta y aprende del resultado.
Como colofón, en este curioso post [¡plink!] Se habla de un concepto muy bonito. Su autor, Jake McWhirter (quien ha tenido la amabilidad de dejarme usarlo aquí), ha desarrollado la “ventana del cervecero”, un espacio dentro de un gráfico donde se ve la actividad de la alfa-amilasa en porcentaje, con su curva en base a la temperatura, y que reproducimos aquí por su valor visual. Un cuadro parecido, pero menos visual, con el mismo concepto, se encuentra en la página 241 del libro Brewing (segunda edición) de Michael J. Lewis and Tom W. Young, pero preferimos reproducir el de Jake.

4P_05_Ventana del cervecero

Los jombrigüeres aplicados pueden leerse este estudio de la Brewing Research Foundation, titulado “The effects of mashing temperature and mash thickness on wort carbohydrate composition”, donde hay interesantes cuadros de la actividad de las amilasas [¡plink!].

Cuadrando la temperatura de macerado (La “fluctuosidad” del asunto)

En la práctica, para conseguir una temperatura concreta, hay que llenar el macerador con el volumen de agua que queremos (de acuerdo con un empaste objetivo, del que hablaremos más abajo) y luego añadir el grano al agua. Como el agua va a perder grados por el camino, primero al entrar en contacto con el macerador, y luego, al enfriarse un poco más por culpa del grano, lo suyo es calcular la temperatura inicial del agua, previendo que bajará al punto que tú quieres cuando la mezcla se complete y la temperatura se homogenice. Si repites la misma receta una y otra vez, no te hará falta hacer los cálculos siempre que elabores, ya que los factores más importantes son la temperatura objetivo, la relación agua:grano (empaste) y la temperatura del grano. Las calculadoras de internet, como por ejemplo la que hay en la ACCE [¡plink!] ayuda mucho. Casi siempre este tipo de calculadoras te darán la pista definitiva para saber a qué temperatura poner el agua. Además, ya sabemos que no hay volverse loco tratando de ajustarlo todo a la décima de Celsius.
De vez en cuando, te encontrarás con algún problema, y el cálculo no ha funcionado del todo bien, así que conviene tener un plan alternativo para ajustar de manera rápida la temperatura del macerado, y seguir adelante con el plan preconcebido del perfil de la receta.
La manera más sencilla es añadir una pequeña cantidad de agua, ya sea fría o caliente, para acabar de clavar la temperatura deseada. La calculadora de la ACCE tiene un apartado para añadir agua caliente si queremos subir la temperatura (diseñada para escalones) [¡plink!] o en Brewer’s Friend tienes una que sirve para subir y bajar la temperatura [¡plink!]. Aunque me parece poco práctica porque para enfriar te hace el cálculo con la temperatura a 10 °C, algo demasiado arbitrario. En realidad, hay mil calculadoras que puedes usar, como la Jim’s Beer Kit [¡plink!].
Lo que hace todo el mundo es añadir agua poco a poco hasta conseguir bajar la temperatura al rango deseado. Si la temperatura a ajustar es poca, también te valdrá si remueves el empaste durante un rato hasta llegar al punto requerido. En equipos más trabajados (RIMS/HERMS), subir la temperatura del macerado conlleva un sencillo recirculado aplicando calor.
En cuanto a qué temperatura elegir macerar, o bien, si elegir varias temperaturas durante un mismo macerado, a más de uno se le ha ocurrido el siguiente planteamiento: si primero macero a una temperatura muy alta, activando las alfa-amilasas, tendré un mosto lleno de cachitos de azúcares, pero un poco grandes (alias “dextrinas”). Si en ese punto, bajo la temperatura, saldrán a correr las beta-amilasas y liquidarán todos esos azúcares en una kermesse enzimática… Y el resultado será un mosto super-fermentable y atenuante… ¡Pues no! Si lo hacemos así, las altas temperaturas que favorecen a las alfa-amilasas desnaturalizarán a las beta-amilasas, que perderán su función biológica, convirtiéndose en enzimas no-muertas que no harán nada para que tu mosto sea más fermentable.
Este planteamiento, que es inútil en una infusión simple, funciona en los macerados por decocción, ya que solo una parte del mosto se lleva a ebullición. Pero de la decocción ya hablaremos en otro artículo. Aquí hemos venido a hablar de la infusión.

Experimento en Brülosophy (Alta temperatura VS. Baja temperatura)

En uno de sus famosos “exbirramentos” de uno de mis blogs de referencia como es Brülosophy, experimentan con la misma receta, pero cambiando la temperatura de macerado. Parten de la base de que la beta-amilasa trabaja en el rango de 55-65 °C y la alfa-amilasa, en el de 68-72 °C, y van a hacer un macerado a 64 °C y a 72 °C. Para resumir el experimento, del que podéis encontrar todos los detalles en el blog original [¡plink!], podemos decir que han usado un kit preparado (Biermuncher’s Centennial Blonde Ale), y ambos macerados han resultado en mostos con una densidad inicial de 1,040, para acabar en una densidad final de 1,005 para el macerado a baja temperatura y de 1,014 en el de alta temperatura. La diferencia de 9 puntos de densidad ya nos constata de forma fiable que van a ser cervezas diferentes, pero el aspecto final de la cerveza también cambia: la espuma es más estable en la macerada a baja temperatura y también la cerveza era más cristalina de forma notable.
Tras la tradicional cata de las muestras, aunque a priori todo iba a indicar que se iba a identificar de manera fácil la diferencia de cuerpo, alcohol (4,4% vs. 3,4%) y el dulzor de la malta entre una y otra, los que notaban la diferencia fueron muy pocos. Es más, cuando se les explicó el experimento a los catadores y se les pidió que identificaran la muestra macerada a mayor temperatura, sólo 4 de 9 supieron señalarla. Lo que parecía muy evidente, al final no lo es tanto.
Como casi todas las veces, parece que “nada de lo que hagas importa”, para los consumidores finales, pero ya hemos visto cómo afecta a los números y a los de morro fino. A partir de aquí, la cerveza y las decisiones, son de cada uno.
Hay un segundo experimento con dos macerados, a 65 y 67 °C [¡plink!]. En cuanto a densidades iniciales, fueron 1,059 para la del macerado a 65 °C contra 1,058 para la de 67 °C (bastante poco indicativo). Las densidades finales también varían, aunque muy poco: 1,008 para la de 65 °C contra 1,009 a 67 °C. El autor del experimento declara no encontrar diferencias entre cuerpo, retención de espuma, espuma generada o cualquier otra característica específica típicamente atribuida a los macerados en rango alto (67 °C no es que sea muy alto). El autor reconoce que pasa una de cada tres pruebas triangulares para identificar la muestra diferente en una cata. Lo que nos viene a decir en este experimento es que no hay apenas diferencia entre macerados de 2 °C de diferencia (al menos, en ese rango de 65-67 °C), lo que nos tranquilizará a la hora de tomar las medidas de temperaturas.
Tanto en el primer experimento que hemos visto como en el segundo, los resultados son un poco descorazonadores, en cuanto a obtener cervezas diferentes. En realidad, mucha culpa de esto lo tienen las maltas bien modificadas, que hacen el trabajo muy fácil para los macerados. Si realmente quieres aumentar el cuerpo de tu cerveza de una manera fiable, conviene añadir maltas que aporten azúcares no fermentables, como las maltas Crystal y Caramelo, que además te van a favorecer la retención de espuma (los supertacañones cerveceros aconsejan un rango de entre un 2 y un 15% del total del grano de la receta, dependiendo del estilo). Otras maltas, como la Special B o incluso las oscuras como la Chocolate o la cebada tostada, también aportan azúcares no fermentables.

Temperatura final (lavado)

Cuando damos el macerado por terminado, el primer paso es subir la temperatura del mismo, habitualmente por encima de los 74 °C (otras fuentes recomiendan 77-78 °C). El paso final del macerado se suele conocer como “lavado”, donde hacemos correr el mosto a través de la cama de grano con la gracia de arrastrar todos los azúcares posibles.
¿Qué conseguimos con este paso? Pues algo realmente importante, que, aunque parezca banal al principio, es bastante sustancial cuando lo entiendes. Si dejas el mosto a su suerte en este punto, las enzimas van a seguir actuando, con más o con menos efectividad, pero podrán variar las cualidades de tu mosto, por ejemplo, las beta-amilasas pueden seguir acuchillando de manera despistada y vaga ciertas dextrinas y aumentar la fermentabilidad, y con ello, bajar el cuerpo de la cerveza, cuando tú precisamente lo que querías es una cerveza con mayor cuerpo.
Si subes la temperatura conseguirás que las enzimas queden inactivas, lo que fijará, de algún modo, la proporción azúcares fermentables y no fermentables que has estado trabajando todo este tiempo. Además, de manera colateral, conseguirás gelatinizar algún almidón residual, lo que te va a permitir un mejor flujo del mosto, algo importante a la hora de vaciar el macerador a través de la cama de grano.

Tercera palanca | El pH

Al igual que hemos visto con las temperaturas, existe otro baile de rangos de pH dependiendo de la publicación que consultes. Lo que hay que tener claro es que nuestras enzimas favoritas van a trabajar bien dependiendo de si el pH es el indicado o no. De nada servirá dejarlas en su rango de temperatura si luego el pH del macerado no está acorde con lo que necesita la enzima concreta, ya que la conversión de los almidones será más costosa (y lenta).
Habitualmente, se suele recomendar un rango de pH para el macerado de entre 5,2 y 5,6 o incluso se acota a 5,3 – 5,6 (medidas tomadas a “temperatura de habitación”, 25 °C).
Pero el baile de cifras da comienzo: Por ejemplo, en el New Brewing Lager Beer, Gregory J. Noonan apunta que el pH idóneo para la alfa amilasa es de 5,1 a 5,9 aunque recomienda un rango de 5,2 a 5,5 para el macerado completo. Ludwig Narziss apuesta por el 5,5 a 5,6… Palmer dice que un rango de 5,4 – 5,8 es lo mejor para el macerado. Un lío.
Además, según el gráfico aportado por Braukaiser [¡plink!] se sabe que la beta amilasa es favorecida por un pH de 5,4 – 5,5 y que a la alfa amilasa le favorece más un 5,6 – 5,8. Pero si observamos bien dicho gráfico, la intensidad del color verde nos proporciona información extra: la enzima trabaja más activa en los colores más intensos, pero vemos que el rango de pH se estira a otros colores más tenues, donde podemos acomodarnos con un pH para todo el macerado.
Con esta información podemos favorecer el trabajo de la alfa amilasa o de la beta amilasa a conveniencia, según el estilo de cerveza que vayamos a hacer.
Aparte de eso, ya dijimos, vía Thean Krueger [¡plink!] que un pH de 5,2 – 5,4 durante el macerado conviene a cervezas claras, mientras que las oscuras (Brown Ales, Stouts…) se favorecen de un rango más alto, 5,6 – 5,8.

4P_06_Extracto tabla ph amilasas
Ya vimos en el post acerca de los mitos más extendidos entre los hombrigüeres [¡plink!] que durante mucho tiempo se creyó que una alta temperatura en el lavado podría arrastrar compuestos (taninos) que iban a provocar cierta astringencia en el mosto. Los últimos estudios, tal y como vimos en el post, delatan que la astringencia se debe a un pH por encima de 6.0.
Por datos como estos, conviene no tomarse el tema del pH a la ligera. No obstante, le dedicaremos un post entero más adelante, para un mejor entendimiento de todo lo que conlleva. Es más, no solo el pH es vital para un buen macerado, si no que la composición del agua también es clave. Por ejemplo, cierto contenido en calcio es esencial, puesto que las amilasas (alfa y beta) son dependientes del calcio, y en su ausencia, no pueden trabajar.

Cómo ajustar el pH del macerado

Aunque este artículo no va de tratamiento de aguas, si no incluía algunas palabras para ayudar al jombrigüer con el pH, sentía como si lo dejara un poco incompleto. Dicho lo cual, no pretendo ahondar mucho en el tema, pero sí vamos a dar algunas indicaciones acerca de cómo manipular el pH para usar bien “la palanca” del pH.
Los métodos para ajustar el pH son variados, aunque casi siempre se recurre a la adición de algún ácido (fosfórico, cítrico o láctico la mayoría de las veces), o mediante cambalaches como la malta acidificada, o incluso con algún producto específico que te soluciona los problemas.
Lo principal es tener un medidor de pH (pH-metro o pehachímetro si eres un rebelde semántico) que te ayude en este paso, bien calibrado. Lo segundo, también importante, sería conocer, aunque sea de manera aproximada, tu agua.
No obstante, como regla general, podemos decir que las cervezas oscuras suelen necesitar menos tratamiento (en cuanto al pH) que las cervezas claras, ya que las maltas tostadas van a producir el efecto colateral de bajar el pH.
Como apunte, el pH del macerado rara vez bajará del 5,2 de manera natural. Sin embargo, sí que puede (de manera natural), ser más alto que los valores recomendados, y en ese caso tocaría actuar para mejorar los resultados.
A continuación, veremos de forma resumida algunos métodos para bajar el valor del pH de tu macerado.

  • Ácido láctico: es un ácido orgánico producido por bacterias (como el lactobacillus). Es bastante accesible y se encuentra barato en muchas tiendas de insumos cerveceros. [¡plink!]. Se suele encontrar líquido, disuelto al 80% – 88%. Conviene leer las indicaciones del fabricante respecto a su utilización y dada la pequeña cantidad que se usa para ajustar el pH, no deja rastros de sabor en la cerveza.
  • Malta ácida (o acidificada): una malta con un poco de historia. Si tenemos en cuenta el cuento mercadotécnico-alemán de la afamada, romántica e inútil Ley de la Pureza [¡plink!], los cerveceros alemanes no podían usar compuestos como ácidos para bajar el pH. Estaban en clara desventaja con otros cerveceros de fuera de Alemania, por lo cual, hecha la ley, hecha la trampa. Desarrollaron una malta acidificada (malta Pilsen de toda la vida, a la cual echaban ácido láctico), la cual, al incluirla en los macerados en los que se necesitaba bajar el pH, actuaba a la perfección y cumpliendo con la “Ley de Pureza” o “Reinheitsgebot”.
  • Ácido fosfórico: Es tan accesible como el ácido láctico en muchos distribuidores de insumos cerveceros. Es un ácido inorgánico, muy común en la fabricación de refrescos y otras industrias alimentarias. No hay impacto en el sabor, cuando las cantidades usadas son coherentes. De hecho, el umbral de percepción del sabor del ácido fosfórico es más alto que el del ácido láctico (es decir, se detectaría antes el lactato que el fosfórico a una cantidad idéntica de ppm).
  • Estabilizadores de pH: Hay productos en el mercado que sirven para facilitarle la vida al jombrigüer, como el 52 pH StabilizerTM de Five Star [¡plink!]. Usando aproximadamente 8 gramos por cada 10 litros de agua, te controla de manera despreocupada el pH del macerado, reduciéndolo a 5,2 y dejándote tiempo para dedicarte a otras cosas. Aunque esta solución parezca mágica, puede que no sea oro todo lo que reluce. Es evidente que al igual que no hay una pastilla milagrosa que cure todas las enfermedades, es lógico pensar que cada agua es un mundo y pueda no servir para todas las aguas. De hecho, en la “Guía Completa de Defectos en la Cerveza” de Thomas Barnes hay un apartado dedicado al descriptor de sabor “5.2”, ya que todo indica a que con aguas muy duras (o si se te va la mano), puede influenciar en el sabor. Las malas lenguas apuntan a que este estabilizador se desarrolló para una cervecera en concreto, pero luego comercializado por petición popular. Por tanto, las aguas que se alejen del perfil original  no se verán muy beneficiadas.
  • Incluso, como truco, se podría hacer un escalón de temperatura que favorezca la acidificación del macerado. Conocido en inglés como “acid rest” y mal traducido de manera sistemática como “descanso ácido”, consiste en remojar la malta entre 30 y 52 °C durante unos 20 minutos, de manera habitual. Como va a depender del agua, lo más coherente es hacer el remojado de la malta al rango de temperatura e ir tomando las mediciones del pH cada cierto tiempo para asegurarse el valor adecuado. Este método ya es obsoleto, por incómodo (hay veces que este paso ha empleado horas).

La mayoría de las veces, lo normal es que tu suministro de agua se mantenga estable, por lo que cuando tengas varios perfiles conocidos, simplemente será repetir los ajustes de manera sistemática. No obstante, de vez en cuando los valores del agua, incluso el pH, varían por alguna razón. No viene mal hacer mediciones periódicas del agua, y si tu lote va a ser de un volumen considerable, conviene no fastidiarlo por algo como un pH inadecuado en el macerado.

Cuarta palanca | El empaste

Llamamos empaste a la relación agua/grano de la mezcla en el macerador, también conocido como “disolución”, pero como es menos glamuroso lo seguiremos llamando empaste. Muchas veces se tiene poco en cuenta, pero es necesario saber que empastes más espesos (de 1,7 a 2,6 litros de agua por cada kilo de grano), provocará que las enzimas tengan más movilidad, y actúen más rápido. Sin embargo, tienen una vida más corta. En general, los empastes más espesos son más fermentables.
Empastes más ligeros o aguados (más de 3 litros de agua por cada kilo de grano), provocará que la actividad de las enzimas sea más lenta, por lo que el mosto resultante será menos fermentable, aunque si se alarga el tiempo, podemos compensar ese punto. También favorece que haya más contenido de nitrógeno soluble en el mosto.
En este interesante artículo de Tom Flores, de 1999 [¡plink!] se afirma, entre otras cosas, que a nivel profesional el macerado se pilota en rangos de entre 2 y 4 litros de agua por grano, y más específicamente, entre 2,5 a 3,2.
Y en una animada conversación con el compañero bloguero, filósofo y orador de Birrocracia [¡plink!] durante la redacción de este post, hablamos acerca de que la clave está en la dispersión. Esto es, en un empaste muy líquido las enzimas tienden a estar más dispersas y actúan en el almidón con mayor dificultad. Como ejemplo para entenderlo, puedes pensar en 2 pilas de cien platos cada uno, la primera la lavas con una cierta cantidad de agua y una cierta cantidad de jabón. La segunda, sin embargo, la lavas con la misma cantidad de jabón, pero con el doble de agua. En el segundo caso lavarás mejor, porque la concentración de jabón será más pequeña. Además, está el hecho de que cuando hacemos macerados con maltas oscuras, convienen macerados más densos y lavados más intensos (no bajará el pH), mientras que las birras claras… convienen macerados más líquidos, pero lavar con menos agua.
Como comentario final para conocer este punto de manera más clara, podemos acudir de nuevo a Brülosophy y ver qué pasa cuando haces la misma receta con un empaste de 2,5:1 y otro de 5:1 [¡plink!]. En este caso, al elaborar una Southern Summer Pale Ale, el macerado con empaste estándar (el de 2,5:1) empezó en una densidad inicial de 1,052 y acabó en 1,010, mientras que el macerado más diluido (5:1) empezó en 1,051 y acabó en 1,012. En la cata de las cervezas, sólo 5 de los 24 catadores supieron identificar la muestra que sabía diferente. Por tanto, una vez más, Brülosophy nos dice, al menos para ese estilo de cerveza, que salvo por un 0,4% de alcohol, las cervezas resultantes eran idénticas.
Si vas a aplicar calor directamente al macerado para controlar la temperatura, debes huir de empastes espesos, para evitar quemar el grano.
Quizá, para aprovechar el empaste, visto lo visto, habría que jugar un poco más con las temperaturas y el tiempo, en lugar de mantener un macerado por infusión simple mono-temperatura. O también, empezar a pensar que la teoría y la práctica discurren por sendas paralelas que no se tocan ni en el más oscuro de los infinitos.

Consideraciones finales

Muchas veces, además, al conocer cómo funcionan estas “palancas”, puedes compensar algún error o deficiencia en alguno de los parámetros por medio del ajuste de otro. Pongamos que tienes un pH de macerado de 5.7 pero no puedes manipularlo. Como sabes que las enzimas trabajarán más lentas, puedes alargar el macerado, o hacerlo más espeso, para que las enzimas estén activas más tiempo. O ambas cosas.

4P_07_cuadro tiempos - temperatura macerado

Existen otros parámetros que también influyen en el macerado, pero no he visto conveniente incluirlos en la categoría de “palancas”.
Por ejemplo, la molienda influirá en el macerado, pero no es algo que estimo que puedas manipular a placer para conseguir un efecto u otro. Hay una molienda efectiva, y una molienda mal hecha. Lo ideal es hacer la molienda de la malta de la manera óptima, y no perder tiempo ni dinero haciéndolo mal.
La planificación del macerado, con un escalado de temperaturas programado, evidentemente, tendrá impacto en el macerado, pero para eso ya tenemos las palancas de tiempo y temperatura, no haría falta otra palanca extra.
El poder diastásico de la malta, del que ya hablamos aquí [¡plink!] también influirá en el resultado del macerado, pero muchas veces ni lo conoceremos, por lo que al igual que la molienda, lo suyo es conseguir malta fresca de calidad, bien modificada, y jugar con los parámetros que están a nuestro alcance.
Y como último apunte (ya para “nota”), hay una corriente de cerveceros que tienen muy en cuenta la oxidación en caliente, o HSA (Hot Side Aeration) en inglés. Vendría a decir que la presencia de oxígeno en el macerado va a afectar negativamente al sabor de la malta, atenuando o cambiando el original, así que chapoteos varios o lanzar el mosto desde altura podría perjudicar el resultado de la cerveza. A pesar de que Denny Conn lo desmiente en el artículo de los mitos más extendidos entre los jombrigüeres [¡plink!], si el tema te interesa puedes leer la traducción de un estudio acerca de este tema en el blog de Homebrewer.es [¡plink!], que te hará replantearte (o no) todo lo aprendido sobre la dichosa oxidación.

Conclusión

En definitiva, si estás empezando a hacer cerveza en casa, procura dirigir tus esfuerzos para conseguir un macerado entre 65 y 67 °C. Muchas veces, incluso 68 °C vendrán bien si tu macerador tiende a perder mucha temperatura (por ejemplo, si haces un macerado en BIAB donde la olla está poco aislada). Y poco a poco, jugar con 3 o 4 grados menos cada vez que elabores un nuevo lote. Así tendrás pruebas de contraste y conocerás los efectos de los cambios de temperatura. El resto de palancas y ajustes, vendrán con el tiempo.
Si ya llevas varios lotes a cuestas y tienes el alma inquieta, esta información te servirá para manejarte en tus siguientes recetas. No hay que dejar de experimentar, ni de aprender.

Prueba del yodo

Como hemos indicado en el apartado dedicado al tiempo, el método para saber si la sacarificación se ha completado o merece la pena emplear más tiempo en este proceso, se llama “prueba del yodo”, por la sencilla razón de que se emplea yodo para que éste reaccione con el mosto.
Es una prueba muy, muy sencilla. Consiste en coger muestras del macerado, evitando a toda costa los restos del grano. Los granos contendrán almidón de forma irremediable y te falsearán las pruebas. Cuando el yodo entre en contacto con el mosto, cambiará de color. Si cambia a colores amarillentos, ambarinos o tonos marrones, la conversión del almidón ha sido completa y puedes dar el macerado por acabado.
Si el yodo se vuelve azul oscuro, púrpura o negro, todavía hay almidones que convertir, y la mejor idea es dejar a tus amigas las enzimas trabajar durante un cuarto de hora más antes de repetir el test. Comprueba, además, la temperatura, no sea que esté en un rango equivocado y las enzimas no estén trabajando. Como siempre, macerado tras macerado, conocerás por la práctica cuánto tardas en completar la conversión de almidones y la prueba del yodo será un vago recuerdo de tu infancia cervecera.
Otro truco de “viejo cervecero” es extraer un poco de mosto y observarlo a la luz. Si el mosto es claro (sin turbidez), estaría en un buen punto de pasar al siguiente paso. Si el mosto presenta turbidez, es preferible aguantarlo más tiempo para conseguir una mejor clarificación.

Referencias:

  • Mashing Basics (Marc Sedam, Zymurgy March/April 2002)
  • Teoría de la Maceración (Pablo Gigliarelli, Revista MASH 2004) [¡plink!]
  • The Theory of Mashing (com) [¡plink!]
  • Brewer’s Window: What Temperature Should I Mash at? [¡plink!]
  • New Brewing Lager Beer (Gregory J. Noonan)
  • Homebrew Manual: A simple, ilustrated introduction to single infusión mash temperatures [¡plink!]
  • “The Science of Step Mashing” (Dave Green, Revisa Brew Your Own, 2008) [¡plink!]
  • “Brewing” (Michael J. Lewis y Tom W. Young)
  • Managing Mash Thickness (Tom Flores, BYO, febrero 1999) [¡plink!]
  • Mashing Variables: Techniques (Chris Colby, BYO, mayo/junio 2006) [¡plink!]
  • Wizard; What mash temperaturas create a sweet or dry beer? [¡plink!]
  • The Brewer’s Companion (Randy Mosher)

Cereales sin maltear en el macerado | [by The Kruger Brewer]

Hace algunos días, el jombrigüer apodado ‘Beer of Thrones’ comentó en el foro ACCE [¡plink!] un artículo acerca de cómo usar los cereales no malteados en el macerado. El artículo aparecía, originalmente, en homebrewtalk.com [¡plink!], pero en realidad forma parte de un interesante blog que se llama “The Kruger Brewer” [¡plink!] cuyo contenido es bastante recomendable.

Como ciertamente la información contenida en dicho post es muy interesante, contacté con el autor, Thean Leonard Kruger, para pedirle permiso y publicarlo en español.

Este post complementa muy bien al post “¿El arroz es güeno?” [¡plink!] donde hablo del macerado asistido. Las explicaciones y razonamientos están muy bien explicados y hace que un proceso como el uso de adjuntos, a priori complicado, parezca un juego de niños. A partir de ahora no nos hará falta buscar en google “a qué temperatura gelatiniza el maíz para hacer una pilsner”, porque el procedimiento será estándar para cualquier cereal no malteado.

Lo que viene a continuación es, como viene siendo habitual, mi traducción/adaptación.

Introducción al macerado con cereales sin maltear

Muchos jombrigüeres acostumbrados a las elaboraciones 100% malta (habitualmente conocidas como todo-grano), a menudo se desaniman a la hora de hacer recetas que incluyen algo más complicado que una infusión simple. Términos como “triple decocción”, suelen evocar en los jombrigüeres imágenes de científicos locos trabajando en laboratorios de estética steampunk junto a su ayudante jorobado y gritando “¡Frau Blücher!”.

Cuando las recetas incluyen un cereal sin maltear, parece que ocurre un poco de lo mismo. Lo cual resulta comprensible, puesto que la mayoría de los artículos sobre el tema en cuestión están llenos de cálculos sobre capacidades diastáticas, temperaturas de gelatinización y cosas peores, de las que nadie que esté tomando una cerveza tan ricamente en un bar, se preocupa en absoluto.

Llegados a este punto, hay que señalar que podrás contar con los beneficios que tiene macerar un cereal no malteado alargando un hora, quizás menos, tu sesión de elaboración. Serás capaz de usar cualquier tipo de grano, harina u otro cereal en tu cerveza, sin excepción. La harina o sémola de trigo o de maíz, el sorgo, el mijo, el tef de Etiopía, el triticale (un cruce entre trigo y centeno), harina de centeno… incluso la harina de garbanzo (si es que eso te interesa). Teniendo en cuenta la versatilidad de este proceso, tan fácil, y lo que puede aportar a las elaboraciones caseras de cerveza, es meritorio compartir los entresijos de cómo funciona. Y lo vamos a describir en cinco pasos muy sencillos.

Si acaso el cuerpo te pide más detalles técnicos, lo que cuadra bastante con el jombrigüer arquetípico, hay un apartado de “detalles” al final de cada paso, el cual explica qué estamos haciendo y por qué lo estamos haciendo. Los únicos cálculos que vas a tener que hacer son los que ya sueles hacer en cualquier elaboración con infusión simple, y para delicia de todos, se incluye una receta de una estupenda Cream Ale (por Kruger Brewer) para practicar lo que se comenta en este artículo.

Primeras consideraciones

¿Qué equipamiento adicional voy a necesitar? La respuesta es: una olla con capacidad para unos 11 litros, o más grande. Indudablemente, se trata de un equipo extremadamente técnico, costoso y difícil de conseguir, es verdad.

Algo a tener en cuenta a la hora de elegir el adjunto con el que vas a elaborar es que lo más recomendable es molerlo lo más fino posible –o comprarlo ya molido, en harina. Por ejemplo, es preferible usar maicena que sémola de maíz, porque la maicena es más fina y vas a sacar más rendimiento de ella (la maicena, en realidad es harina de fécula de maíz).

En cuanto a la cantidad de cebada que hay que usar en un macerado con cereales, es tan sencillo como mirar tu receta, ver cuánta malta vas a utilizar y coger un 10% para añadirlo al macerado con los cereales.

PASO 1: Echar todo en una olla

¿Qué vamos a hacer en realidad? Vamos a hacer una papilla, propiamente dicho. Una papilla fina, acuosa, que contiene el grano sin maltear, el 10% de la mezcla de malta de la receta y agua fría.

¿Qué hay que hacer en este paso? Pon en la olla el cereal sin maltear que has elegido para tu receta (la harina, la maicena, el arroz molido… lo que sea), añade el 10% de la mezcla de maltas que vas a usar para la receta y luego añade agua hasta que surja una papilla aguada, con la consistencia de una crema ligera. Para comprobar si está en su punto, saca una muestra de la olla y vuelve a verterla dentro. Si hay grumos visibles, añade más agua. Si la muestra que viertes se mezcla suavemente y sin grumos, está en su punto.

Detalles del paso 1
Necesitamos hidratar la mezcla de cereales hasta llegar al punto en el que haya absorbido todo el agua posible, pero manteniéndose un entorno líquido. Esto va a permitir que tanto la gelatinización del grano, así como la actividad enzimática de la malta tengan lugar en los siguientes pasos. Nota: la cantidad de agua que añadas no es importante, sólo hay que tener en cuenta la consistencia de la mezcla.

PASO 2: Derrotar al monstruo pegajoso

¿Qué vamos a hacer en realidad? Vamos a calentar la mezcla hasta una temperatura concreta y a dejarla reposar 15 minutos.

¿Qué hay que hacer en este paso? Enciende tu quemador/paellero/resistencia/fuente-de-calor-sea-cual-sea y calienta la mezcla hasta alcanzar los 50 °C. Tapa la olla y espera 15 minutos. La velocidad a la que se calienta la mezcla depende de ti; puedes calentarla despacito, removiendo con suavidad, o calentarla rápido removiendo como una bestia parda… como quieras. Después de este paso, te darás cuenta de que tu papilla ya no está pegajosa y que no se forman más grumos.

Detalles del paso 2
Vamos a calentar la mezcla hasta un punto en el cual las peptidasas de las maltas se activan (en el rango entre 45 y 53 °C para las proteínas de cadena larga). Los betaglucanos también se activan razonablemente, y ayudan a que la mezcla se haga más fluida.

PASO 3: Exprimir los azúcares

¿Qué vamos a hacer en realidad? Vamos a calentar otra vez la olla hasta una temperatura concreta y a dejarla reposar otros 15 minutos.

¿Qué hay que hacer en este paso? Enciende de nuevo tu fuente de calor y calienta la mezcla hasta que alcance los 65 °C. Tapa la olla y espera otros 15 minutos.

Detalles del paso 3
Como hay partículas de almidón suspendidas en la solución que son capaces de ser convertidas en este punto, este descanso de sacarificación los convierte y ayuda al aumento del rendimiento en el macerado principal.

PASO 4: El hervido final

¿Qué vamos a hacer en realidad? Vamos a hervir la mezcla durante 30 minutos.

¿Qué hay que hacer en este paso? Enciende otra vez tu fuente de calor hasta que la mezcla hierva. Deja que hierva durante 30 minutos.

Detalles del paso 4
Con independencia del cereal que hayas usado, el hervor va a gelatinizarlo. La gelatinización permitirá que las alfa y las beta-amilasas del macerado principal conviertan los almidones recién gelatinizados en azúcares simples.

PASO 5: Combinar los macerados

¿Qué vamos a hacer en realidad? Vamos a combinar los macerados independientes en uno solo, para conseguir el típico macerado de infusión simple.

¿Qué hay que hacer en este paso? En este punto, hay muchos libros que dicen que lo correcto sería hacer el cálculo de volúmenes y temperaturas necesarios para que al añadir el macerado de cereal sin maltear (a 100 °C o casi), suba la temperatura del macerado principal al rango correcto de maceración –lo cual, no es tan fácil para la mayoría de los jombrigüeres y puede convertirse en una locura. Hay una manera más sencilla de hacerlo:

1. Prepara el agua de tu macerado de infusión simple como siempre, a la temperatura que requiera.
2. Pon la malta a macerar en el agua caliente como siempre lo has hecho.
3. Ve añadiendo agua fría poco a poco al macerado de cereal sin maltear, hasta que esté a la misma temperatura que el macerado principal.
4. Echa el cereal sin maltear en el macerado principal (los dos tendrán la misma temperatura).
5. Ve a por otra cerveza.

Detalles del paso 5
Lo que dicen muchos libros cerveceros es que el macerado de cereales no malteados funciona casi como una decocción, donde tendrías que mantener tu macerado principal en un “descanso de proteínas” y luego echar el cereal hirviendo al macerado, para completar el volumen de macerado a la temperatura correcta. Aunque este método sea el más eficiente, también es el que te llevará más tiempo hacerlo de forma correcta –es la típica cosa que echará para atrás a los jombrigüeres que no quieran complicarse la existencia, con lo que no experimentarán con estos procesos. En lugar de eso, en esta guía se ha optado por mantener todos los procesos sencillos y el macerado por “infusión simple” tanto como sea posible, lo cual quiere decir realmente que lo único malo que tiene este procedimiento es que te alargará una hora tu sesión de elaboración –o como la mayoría de nosotros lo entendemos, tendríamos que bebernos dos o tres cervezas más de lo normal (lo cual no parece mucho motivo de queja).

Si quieres más información acerca de los cálculos para el macerado de cereales sin maltear, lee la sección acerca de los cálculos diastáticos, al final del post.

La receta de Cream Ale de Kruger Brewer

Esta es una receta muy fácil que puedes elaborar para poner en práctica el procedimiento del macerado de cereal no malteado. Además, puedes cambiar la harina de maíz amarillo que se usa en esta receta por cualquier otro adjunto (cereal no malteado) que quieras –una muy buena manera de entender qué aporta cada uno de los adjuntos, si los usas por separado y tomas buenas notas. (Nota: al ser una receta puramente americana, usa malta de 6 hileras. Puedes hacer tu versión europea prescindiendo de ella. Si quieres conocer más detalles sobre una malta y otra, lee la sección “las maltas base: los sospechosos habituales” del post “¿El secreto está en la malta?” [¡plink!])

Densidad Inicial: 1,050
Densidad Final: 1,010
IBU: 17
EBC: 8,1
ABV: 5,3%
Volumen del lote: 19 litros
Rendimiento estimado del macerado: 70%

INGREDIENTES:
• 2 kg malta de 6 hileras
• 1.5 kg malta Pale
• 1 kg harina de maiz amarillo (o cualquier otra harina, sémola, etc…)
• 10 g lúpulo Falconer’s Flight (60 min, adición de amargor), 13,5 IBU
• 10 g lúpulo Liberty (30 min, adición de sabor), 4 IBU
• 1 sobre de levadura Safale US-05

Macerado por infusión simple a 65 °C durante 75 minutos.

La cantidad de malta de cebada que hay que coger para el macerado del cereal no malteado es de unos 350 gramos (lo que viene siendo el 10% de los 3,5 kg de malta totales que tiene la receta). El primer paso de esta receta es hacer el macerado/hervido de la harina de maíz amarillo como se ha descrito más arriba. Una vez hayas acabado con el hervido de la harina (paso 4), puedes seguir preparando tu macerado como lo haces normalmente. Es decir, pones al agua caliente a la temperatura justa para que al añadir el grano molido, te baje al rango de macerado. Mientras dicho macerado está ya a la temperatura correcta, ve enfriando el macerado del cereal sin maltear (añadiendo agua fría poco a poco) hasta igualar su temperatura con la del macerado principal, en este caso, a 65 °C, y simplemente, añádelo dentro de los primeros 15 minutos de macerado (lee el paso 5 para más detalles).

Thean Leonard Kruger, el autor del post, se despide deseando sinceramente que se use el método y la información de este post para mejorar nuestras habilidades como jombrigüeres y acabar haciendo cervezas realmente sorprendentes.

Formulación de Cálculos Diastáticos

Este apartado no forma parte del post original, pero está mencionado en él y podéis encontrarlo en inglés en el blog de Krugerbrewer [¡plink!]

En este blog ya se habló de “Conceptos avanzados: la modificación, el poder diastático y el nivel de proteínas” en el post “¿El secreto está en la malta?” [¡plink!]

No hay duda alguna de que te va a gustar usar cereales sin maltear en muchas de tus recetas y mejunjes, pero la cuestión que siempre sale es “¿cómo sabes si se convertirán los almidones en azúcares simples?”, es decir, ¿cómo puedes estar seguro de que habrá suficientes enzimas para conseguir que todos los almidones del cereal usado se conviertan en azúcares? En el mundillo jombrigüer, este cálculo tiene que ser sencillo… (Ten en cuenta que estos cálculos no tienen nada que ver con la gelatinización, sólo con la actividad enzimática. Si tus almidones no están gelatinizados, no se convertirán en azúcares).

Grados Lintner vs. Índice Windisch–Kolbach

Los americanos usan grados Lintner (°L) para medir el poder diastático de un grano (el ‘poderío enzimático’, que digo yo), mientras que los europeos usan los WK (Windisch-Kolbach). Para convertirlos entre sí puedes usar estas fórmulas:

WK = (°L x 3,5) – 16
°L = (WK + 16) / 3,5

Para calcular el poder diastático puedes usar cualquiera de las unidades, siempre que uses la misma en todos los cálculos. Vamos a usar la receta de la Cream Ale como ejemplo, y se entenderá rápido. Los datos que necesitas conocer son:

1. El total del volumen de grano de tu receta
2. Grados Lintner / Kolbach de cada uno de tus granos (PD= Poder Diastático).

Para comprobar si se convertirán o no, necesitarás aplicar la siguiente fórmula:

formula-kg-pd

Si el resultado del cálculo es:

• Menos de 30 °L (o 89 WK), tus almidones se convertirán poco o no del todo.
• Más de 30 °L (o 89 WK), tus almidones se convertirán de manera adecuada.

EJEMPLO:
En la receta de la Cream Ale de Kruger Brewer (ver receta arriba), tenemos que:

• 2 kg malta 6 hileras (Lintner = 160 )
• 1,5 kg malta Pale (Lintner = 140)
• 1 kg de harina de maíz Amarillo (Lintner = 0)

Kg total de grano = 2 + 1,5 + 1 = 4,5 kg.
Total PD= (2 x 160) + (1,5 x 140) + (1 x 0)
= (320) + (210) + (0)
= 530

Poder diastático del macerado = 530 / 4,5 = 117,7 °L

Veredicto: como el resultado es más alto que 30, habrá enzimas suficientes como para los almidones se conviertan adecuadamente.

Veamos un ejemplo muy extremo. Pon que usas 2 kilos de malta Pale (2x 140 = 280) y 10 kilos de harina, con poderío enzimático 0 (2 kg + 10 kg = 12 kg). Cuando dividas 280 entre los 12 kilos, te da un resultado de 23,3. Sabrás que hay poca malta (pocas enzimas) para tanto almidón (por si no se veía así, a ojo…)

Matemática cervecera | Los Puntos de Densidad

En mi lento ritmo de creación de artículos, me he dado cuenta que para seguir el hilo de algunos de ellos, primero conviene tener claros algunos conceptos básicos. Como este blog está concebido a largo plazo, quiero pensar que dentro de algunos años el contenido del mismo sea el suficiente como para poder trabajar con él con independencia de otros recursos, al menos a ciertos niveles, mientras que dicha información sea a la par manejable, útil, práctica y entretenida.
Justo por esto, no me queda más remedio que centrarme también, de vez en cuando, en tribulaciones básicas de cervecero casero a las que poder hacer referencia en artículos venideros, sin tener que recurrir a otros sitios. Así que el post de hoy está dedicado a los Puntos de Densidad.

Cuando se empieza en el apasionante mundo del jombrugüin, dejando de lado los aburridos e insulsos kits de extractos y lanzándonos al jombrugüin en estado puro: el conocido como todo-grano (o 100% malta) todo son dudas, inseguridades y vacilaciones.

Por un lado tenemos nuestra agua, nuestro saco de malta de cebada, nuestros lúpulos perfectamente conservados y la levadura a punto para hacer nuestra primera elaboración. Hemos buscado unas cuantas recetas que elaborar, y como no queremos complicarnos demasiado hemos escogido una muy sencillita, pero no estamos seguros de si las cantidades de malta y de agua (¡o de lúpulos!) son las idóneas. Podemos imaginarnos al neojombrigüer moviendo cacharros de aquí para allá sin saber muy bien cómo actuar en cada momento (yo me sentía así), y pesando cantidades esperando no meter demasiado la pata… Así que una de las primeras preguntas que vienen a la mente es la de ¿cuánta malta tengo que poner aquí para llegar a la densidad que me marca la receta?

Parece simple, y en realidad lo es si somos capaces de manejar ciertos factores muy básicos. Es decir, si por un lado sabemos que necesitamos llegar a una densidad objetivo de 1,045 después de hervido y hemos calculado que la cantidad de mosto que vamos a tener en nuestro fermentador (una vez terminado el macerado y el hervido) es de 20 litros… ¿cuántos kilos de malta necesitamos poner en el macerador para que la densidad después del hervido no sea ni 1,060 ni 1,030… si no los 1,045 que hemos proyectado?

Hay mucho software (gratuito o no) que te hace estos tipos de cálculos sin ningún esfuerzo. Sin embargo, la gente curiosa (como yo) necesita saber de dónde vienen y a dónde van estos números. Yo quise saberlo al principio, con el ánimo de tener un mejor control de los procesos, y a la postre no he usado nunca ningún software de elaboración para hacer estos cálculos. Reconozco que tengo mi propia hoja Excel que he generado para no perder tiempo haciendo muchos cálculos manualmente, pero nunca he sentido la necesidad de apoyarme en un software específico para diseñar mis recetas.

La principal fuente de toda la información del post viene del libro de Ray Daniels, “Designing Great Beers”, pero hay multitud de otros sitios de referencia donde investigar los mismos parámetros, no se trata de ningún secreto ancestral, sino de lo primero que se aprende cuando se empieza a hacer cerveza en casa. Uno de mis post favoritos respecto a este tema (en inglés) es este [¡plink!] de la web http://homebrewmanual.com/ Además, la mayoría de las publicaciones se mueven en onzas, libras y galones y la suerte de este artículo es que ya habla en litros y kilos.

Y como el movimiento se demuestra andando, lo mejor es conducir la explicación a través de un ejemplo sencillo. Imaginemos que queremos hacer una cerveza de fácil elaboración, tipo English Pale Ale (Bitter, grupo 8B de la BJCP), con una densidad inicial objetivo de 1,045 y compuesta de los siguientes ingredientes:

92%  Malta Pale
5%   Malta Crystal
3%   Copos de trigo

Así que para empezar a recabar la información necesaria para nuestra ecuación en realidad hay que irse al final del proceso: ¿cuánta cerveza quedará al final de todo el proceso? Este será el dato elemental que va a condicionar todo. Obviamente no será lo mismo hacer 10 litros de cerveza, que 20 o que 30. Así que en nuestro ejemplo vamos a suponer que queremos acabar con 25 litros de cerveza.

Llegados a este punto, ya podemos empezar a jugar con los Puntos de Densidad. En inglés unas veces se llaman Gravity Units y otras Gravity Points, con sus respectivas abreviaturas (GU y GP), pero nosotros simplemente les llamaremos Puntos de Densidad (PD). Además, los números calculados a la manera anglosajona (en libras y galones) no se corresponden con estos Puntos de Densidad a la española, puesto que al multiplicar cantidades dan resultados más pequeños que no podemos tener en cuenta.

Los Puntos de Densidad van a indicar de manera directa y segura la cantidad real de azúcares que hay en tu cerveza o en tu mosto (o la cantidad que quieres que haya). La densidad por sí misma es un valor que te indica un objetivo, pero si no está vinculado a un volumen concreto de cerveza, no es plenamente indicativo. Además, si te paras a medir densidades todo el rato, tendrás multitud de valores confusos y diferentes: una densidad en el primer mosto del macerado, una densidad en el segundo mosto, una densidad distinta antes de hervir, otra después de hervir… Sin embargo, los Puntos de Densidad sugieren un valor absoluto que te van a servir no sólo para saber que todo va bien, sino también para predecir qué va a ocurrir en el futuro inmediato (es más fiable que leer el futuro lanzando conchitas chiquititas sobre un tapete de felpa).

El principio del mismo es bien sencillo: el contenido de azúcar de un mosto, después del macerado, no varía. Supongamos que tenemos 10 litros de mosto, y le añadimos 5 litros de agua; es evidente que el total de azúcares del mosto no habrá variado con dicha adición de agua, solo que estarán más diluidos. En el caso contrario, si hervimos esos 10 litros de mosto y lo dejamos en 8 (por evaporación), tendremos exactamente la misma cantidad de azúcares, pero más concentrados (lo que equivale a un mayor valor de densidad). Pero en los tres casos, con 8, 10 o 15 litros, el contenido en azúcares es exactamente el mismo.

Si queremos explicarlo de manera más básica aún, tenemos la parábola de los gatitos en la piscina. Imagina una piscina hinchable llena de agua hasta la mitad donde están nadando siete tiernos gatitos. Imagina también que la piscina hinchable es tu olla, el agua es el mosto y los gatitos, los azúcares de la malta. Si llenaras la piscina de agua hasta arriba, seguirían siendo siete los gatitos que hay en la piscina. Y si abrieras el grifo para sacar el agua de la piscina, seguiría habiendo siete gatitos en la piscina. Varíe lo que varíe la cantidad de agua, los gatitos son los mismos. Varíe lo que varíe el volumen del mosto, una vez acabado el macerado y los azúcares están disueltos, dicho contenido en azúcares será constante a lo largo de todo el proceso.
Por tanto, podemos decir que:

Puntos de Densidad = Factor Denso x Volumen (litros)

¿Qué demonios es el Factor Denso? La respuesta rápida es que el Factor Denso es un nombre estúpido que me he inventado para darle un poco de lógica y coherencia a los cálculos. Resulta que para medir la densidad específica de un líquido se toma como referencia la densidad del agua destilada, que es 1. Si al agua pura se le van añadiendo y disolviendo otras partículas, la densidad aumenta… así, cuanto más contenido de azúcar hay en un líquido (en nuestro caso, el mosto), más alta será la densidad específica de dicho líquido. El problema viene que unas veces el valor 1 se expresa como 1.000 o como 1,000 o como 1000. En el caso de 1.000 es porque los anglosajones usan el punto para separar la parte decimal, igual que aquí usamos la coma. Esto provoca que muchas veces leemos la cantidad 1.080 o 1,080 como “mil ochenta” o “uno como ochenta”. Ni que decir tiene que las veces que no vemos ni coma ni punto (1080), decimos “mil ochenta” o, directamente, “ochenta”. A efectos prácticos nos da lo mismo, y puedes ver las cantidades con comas, puntos o solo números indistintamente en cualquier texto de cervecería casera. Sin embargo, a la hora de confeccionar una norma o fórmula matemática para cualquier aplicación informática, no es lo mismo.

El “Factor Denso” (fd) es la parte de la cifra de la densidad específica que está después del punto, o de la coma. Si tratamos la densidad como un valor de “mil y pico”, la fórmula sería (usando una densidad de 1.085 como ejemplo):

Factor Denso = 1.085 – 1.000 = 85

Si lo tratamos como una “coma”, la fórmula sería esta:

Factor Denso = (1,085 – 1) x 1.000 = 85

Pero no te hace falta hacer ningún cálculo matemático para saber que el Factor Denso de 1,085 es 85, o el Factor Denso de 1,060 es 60.

Así que si retornamos a la fórmula anterior y a nuestro ejemplo, tenemos que:

Puntos de Densidad = Factor Denso x Volumen (litros)
Puntos de Densidad = 45 x 25 = 1.125

Donde 45 es el Factor Denso de nuestra densidad inicial objetivo (1,045) y 25, el volumen total de litros de cerveza que queremos tener al final del proceso. Y el producto de ambos valores, 1.125, nuestros Puntos de Densidad objetivos. Con esta información ya podemos hacer (y saber) muchas cosas.

El Extracto Potencial

Las cosas empiezan a complicarse un poquito a partir de ahora, peno no demasiado. Si ya sabemos nuestros Puntos de Densidad objetivo (de ahora en adelante, PD), necesitamos saber qué cantidad de azúcares nos va a aportar cada malta o adjunto que hay en nuestra receta. Es evidente que todas las maltas no tienen el mismo contenido de azúcares, así que tenemos que saber, o al menos estimar cuál es el potencial de extracto de cada una de las maltas que intervienen en la maceración.

Aquí tenemos que obviar el hecho de que cada malta es un mundo, no ya la misma clase de malta de dos malterías diferentes, sino la misma malta de un mismo fabricante de cosechas distintas, o el mismo saco de malta usado en diferentes momentos (según la conservación del mismo) y otros factores de control. Se supone que estamos diseñando una receta, y no haciendo el business plan para los próximos diez años de un holding de empresas.

Podemos definir, simplificando, que el Extracto Potencial de las maltas (y adjuntos) es el contenido en azúcares susceptible de disolverse en agua caliente y formar parte del mosto. Es fácil de entender si decimos que el azúcar blanco (sacarosa, de hecho) tiene un Extracto Potencial a todos los efectos del 100%. Es decir, como el azúcar blanco es 100% azúcar, contribuirá con un 100% de sus azúcares a la densidad del mosto. ¡Obvio! Así, constituye la referencia para el resto de ingredientes.

La malta, sin embargo, no es 100% azúcar. Tiene cáscaras (por decir algo que podemos ver con los ojos) y otros compuestos diferentes. Por eso las malterías someten sus maltas a un estudio de laboratorio para conocer al detalle todas las características importantes: humedad, proteínas, alfa-amilasas… y por supuesto, el Extracto Potencial. Como ejemplo podemos consultar un análisis típico completo de las maltas de BRIESS Malt & Ingredientes Co. aquí [¡plink!], donde por ejemplo podemos ver que la malta Pilsen tiene un 80,5% de Extracto Potencial, mientras que la CaraPils tiene un 75%. Y de un vistazo simple podemos ver que las maltas base típicamente rondan el 80%, mientras que las especiales más comunes van desde un 78% a un 75% o un poquito menos (72%) para las más tostadas, con menor contenido en azúcar soluble en el mosto.

dedako

Ray Daniels, en el quinto capítulo de su libro “Designing Great Beers” usa un enfoque distinto para los Extractos Potenciales, pero poco, porque en esencia parte del mismo sitio. Primero, construye una tabla de referencia para las maltas más comunes, puesto que estar investigando las maltas de cada fabricante, durante todas las cosechas, es un tarea aburrida y poco práctica (las variaciones son mínimas) y segundo, plantea el potencial de cada una de ellas haciendo la siguiente estimación: si 1 libra de cierta malta se macera en 1 galón (americano) de agua, ¿qué densidad conseguimos? Teniendo esa información, podemos saber de manera sencilla cuánta malta usar para alcanzar la densidad del mosto que queremos. En nuestro lenguaje de litros y kilos, la pregunta sería ¿qué densidad conseguimos si ponemos 453 gramos de cierta malta en 3,784 litros de agua?, lo que haría impracticable cualquier tipo de cálculo sencillo. Sin embargo, con un cálculo teórico sencillo podemos transformar esos datos y estimar qué densidad nos darían 100 gramos de malta en un litro de agua, lo que sí es más útil.

En la siguiente tabla podemos ver un resumen de estos cálculos, junto a la información que usa John Palmer en el How to Brew [¡plink!] y de la que más adelante hablaremos de cómo usarla. Si nos fijamos bien entre ambas columnas, podemos ver una correlación muy clara entre ellas, lo que certifica que la base es la misma.

Tabla_ExP

Por supuesto, tenemos que tener en cuenta que se trata de un cálculo teórico, porque en la mayoría de los casos, aún en las condiciones más favorables del mundo, no todo el Extracto Potencial de la malta pasa al mosto… y por eso tenemos que hablar del rendimiento del macerado.

El rendimiento del macerado

Podemos (y lo haremos) dedicar un post entero acerca del rendimiento del macerado, ya que hay corrientes de opinión, teorías contrarias y hasta extremismos religiosos acerca de cómo calcular de forma correcta el rendimiento del macerado. Y realmente es un tema apasionante sobre el que discutir.

No obstante, para el caso que nos ocupa es mejor pasar un poco de puntillas y centrarnos en otras prioridades. Quedémonos con el hecho de que la realidad es que no todas las cosas salen siempre como las planeamos, y aunque una malta tiene un potencial de extracto dado, hay muchas variables y acontecimientos que van a influir en el macerado para que todo ese extracto pase al mosto, y finalmente, en la mayoría de los casos sólo pase una parte del mismo. Por eso hablamos del fenómeno conocido como “rendimiento del macerado”. Según Ray Daniels, en los equipos usuales de jombrugüin dicho rendimiento suele moverse en el rango de un 65% en los casos más pobres y en un 80% en los mejores (insisto, esto es carne de debate que ya abordaremos en otro post, no vamos a discutirlo ahora) y la idea es que cada uno de nosotros sepamos el rendimiento de nuestro equipo.

Como al principio es difícil saberlo o si estás usando un equipo por primera vez es imposible saberlo, lo ideal es hacer una estimación al 70% o al 75%, y luego ir ajustando en función de los resultados. Es recomendable ser conservador con este dato y usar el 70% al principio, porque si alcanzas más rendimiento, siempre puedes añadir más agua y acabar con más cerveza.

Empezando los cálculos

Recopilemos los conceptos que hemos manejado hasta ahora: conocemos los Puntos de Densidad (PD), el Extracto Potencial (ExP) de las maltas y el Rendimiento del macerado (R%), así que con todo esto podemos obtener respuestas a nuestras preguntas iniciales.

Como hay diferentes planteamientos y enfoques, vamos a ver dos de ellos y que cada cual use el que más le convenga. Antes de usar estos cálculos para el ejemplo inicial de la receta propuesta, vamos a explicar las fórmulas como si sólo usáramos una única malta para alcanzar la densidad objetivo, así será fácil de entender. Digamos, entonces, que queremos alcanzar una densidad de 1,045 para 25 litros de cerveza usando sólo malta Pale.

El enfoque Daniels

Si estudiamos el planteamiento que Ray Daniels usa en su libro, y convertimos sus fórmulas a kilos y litros, obtendremos la siguiente fórmula simplificada:

Kg de malta= Puntos de Densidad / Extracto Potencial / Rendimiento / 10
( Kg = PD / ExP / R% / 10 )

Donde:

Kg de malta (Kg): el resultado de la fórmula nos dará directamente los kilos de malta a usar en el macerado.

Puntos de Densidad (PD): los puntos de densidad objetivo que hemos calculado para conseguir una densidad específica después del hervido. Recordemos que en nuestro ejemplo tenemos un objetivo de 1.125 PD (45 x 25 litros).

Extracto Potencial (ExP): es el extracto potencial de cada malta de la tabla de referencia que hay más arriba, expresado en modo “factor denso”, ya explicado. Según dicha tabla, la malta Pale tiene un extracto potencial de 1,030, lo que expresado como “factor denso” sería 30.

Rendimiento (R%): es el rendimiento del macerador, expresado en %. Si partimos de la base de un 70% para empezar, tendremos que usar 0,70.

Por tanto:

Kg de malta = 1125 / 30 / 0,70 / 10
Kg de malta = 5,357

Claro y sencillo. Pero… ¿qué pasa si no usamos sólo una malta, sino varias como en la receta planteada al principio? No es para nada complicado, en serio. Volvamos a ese ejemplo. Recordemos que la receta original era:

92%  Malta Pale
5%   Malta Crystal
3%   Copos de trigo

Y como ya sabemos que nuestros Puntos de Densidad objetivo son 1.125, sólo hay que ponderar qué parte de material fermentable aportará cada uno de los ingredientes. Como tenemos los porcentajes a mano, no hay nada más sencillo:

Malta Pale: 1125 x 0,92 = 1035 PD
Malta Crystal: 1125 x 0,05 = 56 PD
Copos de trigo: 1125 x 0,03 = 34 PD

Hemos redondeado los decimales para no complicarnos la vida (no habrá diferencias). Ya sabemos que de los 1.125 PD, 1.035 PD vendrán de la malta Pale, 56 PD de la Crystal y 34 PD de los copos de trigo. Así que ahora aplicamos la fórmula que ya conocemos, teniendo en cuenta que según la tabla de referencia, el extracto potencial de la malta Crystal es 28,5 (como pone 1,028 – 1,029 tiramos por la media y con esto intento además transmitir que estamos estimando y que esto no es una ciencia exacta ni alquimia delicada) y el de los copos de trigo, 30.

Por tanto:

Kg de malta Pale: 1035 / 30 / 0,70 / 10 = 4,928 kg.
Kg de malta Crystal: 56 / 28,5 / 0,70 / 10 = 0,280 kg.
Kg de copos de trigo: 34 / 30 / 0,70 / 10 = 0,162 kg.

C’est fini. Ya tenemos nuestra receta completa.

El ‘otro’ enfoque

Como ya se ha comentado, hay muchos planteamientos para hacer los mismos cálculos, aunque casi todos nos vienen dados en libras y galones (o lo que es peor, en alemán). Como en esta página [¡plink!] los cálculos ya vienen en litros y kilos, creo que merece la pena echar un vistazo a ver qué dice.

El autor de esta web, un tal John, toma como referencia lo que a partir de ahora llamaremos el “Punto de Referencia del Azúcar”, o el dato de que la sacarosa tiene 46 PPG (Points per Pound per Gallon). Esto nos dice que por cada libra de azúcar que se añade a un galón de agua, obtenemos 46 puntos de azúcar. Esta información la podemos contrastar en la página de otro John, esta vez, John Palmer y su How to Brew [¡plink!]. Como esta información es poco práctica por sí sola, nuestro amigo la convierte en Puntos por Kilogramo por Litro (lo que empezaremos a llamar PKL), usando el factor de conversión de 8,345.

Por tanto:

PKL = PPG x 8,345
PKL = 46 x 8,345 = 383,87

Redondeando, podemos decir que es 384. Y esta cifra es importante, porque lo que en realidad te está diciendo es que, teóricamente, si añadiésemos 1 kilo de azúcar en 1 litro de agua, estaríamos añadiendo 384 Puntos de Densidad. Teniendo en cuenta esta información y lo aprendido hasta ahora respecto a rendimiento y Puntos de Densidad, podemos aplicar esta fórmula:

Kg de malta = Puntos de Densidad / (Extracto Potencial % x Rendimiento % x 384)

No estamos haciendo otra cosa que modificando el potencial del azúcar con respecto al potencial que tiene una malta concreta y al rendimiento del macerado, y enfrentándolo a los Puntos de Densidad que queremos conseguir. Veamos los ejemplos.

Igual que antes, empecemos suponiendo que vamos a usar sólo la malta Pale para llegar a los 1.125 PD. Aquí no usamos la tabla de Extracto Potencial desarrollada por Daniels (y convertida a kilos y litros por mí), sino la parte reservada a John Palmer y que podemos ver en su propia página [¡plink!], en la columna Max. Yield (Rendimiento Máximo). Si queremos comparar esta información, podemos fijarnos en la columna llamada “Extract FG%” en documentación de BRIESS que vimos al principio del artículo, y como se expresa en %, el 80 de la Malta Pale se convierte en 0,80. Respecto al Rendimiento, tomamos el mismo de referencia, un 70%, o sea, 0,70.

Por tanto:

Kg de malta = 1.125 / (0,80 x 0,70 x 384) = 5,232

La diferencia con el anterior planteamiento son apenas 125 gramos, así que podemos considerar que los dos apuntan al mismo sitio.

De igual modo que hemos hecho antes, si tenemos en cuenta la receta del ejemplo inicial y aplicamos la fórmula una vez ya ponderados los porcentajes a los 1.125 PD y cogiendo los potenciales de la malta Crystal y los copos de trigo de la tabla de John Palmer (74 y 77 respectivamente) tenemos que:

92%  Malta Pale; 1125 x 0,92 = 1035 PD
5%   Malta Crystal; 1125 x 0,05 = 56 PD
3%   Copos de trigo; 1125 x 0,03 = 34 PD

Kg de malta Pale: 1035 / (0,80 x 0,70 x 384) = 4,813 kg.
Kg de malta Crystal: 56 / (0,74 x 0,70 x 384) = 0,282 kg.
Kg de copos de trigo 34 / (0,77 x 0,70 x 384) = 0,164 kg.

Si lo comparamos con el planteamiento anterior, vemos que las variaciones son mínimas y que ambas cantidades nos van a dar resultados similares.

Ahora ya sabemos lo suficiente como para poder calcular cualquier cantidad de malta necesaria para adaptar y elaborar cualquier receta que nos encontremos. En la tabla de maltas que existe en HomeBrewTalk.com [¡plink!] podemos obtener información de muchas otras maltas que no están listadas en la tabla-resumen de este artículo. Tampoco hay que perder la cabeza, si haces los cálculos con el valor potencial de una malta parecida o similar, no vas a notar mucha diferencia en la densidad, date cuenta que los porcentajes en peso de las maltas particulares (y por ende, los Puntos de Densidad que aportan) son pequeños.

Implicaciones prácticas

Los Puntos de Densidad no sólo sirven para diseñar recetas, sino para anticiparse a errores en la elaboración. Ya sabemos gracias a la parábola de los gatitos en la piscina hinchable que la cantidad de azúcares no cambia por mucho que reduzcas el mosto (hirviéndolo) o lo diluyas (añadiendo más agua).

Por tanto, supón que pones 35 litros de mosto en tu olla de hervido con una densidad de 1,041 y sabes que si hierves durante 90 minutos tu olla evapora 8 litros. O imagina que, directamente, quieres hervir hasta conseguir 27 litros, que es lo que cabe en tu fermentador. Cualquier posibilidad es válida, es por tener un ejemplo para poder explicar este punto.

Como los Puntos de Densidad serán los mismos con 35 litros y con 27, y sabemos que tenemos una densidad específica de 1,041 con 35 litros, podemos saber qué densidad vamos a tener con 27 litros, aplicando la siguiente fórmula:

PD al final del hervido = (Puntos de densidad al principio x Volumen al principio) / Volumen al final

Recuerda poner la densidad de acuerdo al modo de “factor denso” que ya hemos explicado. Por tanto, en el ejemplo:

PD al final del hervido = (41 x 35) / 27
PD al final del hervido = 1435 / 27
PD al final del hervido = 53,15

Esa cifra de 53,15 nos dice que al final del hervido tendremos una densidad de 1,053. Yo este cálculo lo he usado a veces cuando he medido la densidad antes de hervir y luego, con el jaleo de enfriar el mosto y limpiar todo, he puesto la levadura en el mosto olvidándome de medir la densidad.

Si cuando hagas esta estimación te das cuenta de que te has quedado corto con la densidad, puedes arreglarlo hirviendo más tiempo o bien añadiendo extracto seco (o azúcar). Si por el contrario la densidad prevista es más alta de la que esperabas, puedes añadir agua para rebajarla (o incluso, quitar mosto para usarlo para otros menesteres como hacer starters y sustituirlo por agua).

Ultimas reflexiones

En internet podemos encontrar miles… qué digo miles… ¡cientos de miles!… qué digo cientos de miles… ¡millones!, ¡millones de recetas de cervezas!, todas ellas diferentes y particulares entre sí. Sin embargo, ya hemos visto que la información básica para poder adaptar las recetas son las densidades objetivo, el volumen deseado y el rendimiento del macerador (entre otras).

En la mayoría de los casos, en estas recetas que están en la web, se omite el rendimiento del macerador, pero sin embargo se dan pesos concretos de cargas de malta… lo cual no suena muy lógico. Podrías omitir el rendimiento del macerador con el que elaboras esas recetas si confeccionas la receta por medio de porcentajes, así la cantidad puede ser adaptada fácilmente dependiendo del macerador de cada cual.

Si sólo te dan pesos específicos, si quieres adaptar la receta a tu equipo, primero tendrías que calcular los porcentajes de carga de cada malta, y con esa información, la densidad objetivo, tu volumen de mosto en fermentador y tu rendimiento de macerado, puedes personalizarla en un periquete y sin ninguna dificultad gracias al concepto de Puntos de Densidad.

Vuelvo a remarcar el hecho de que quiero profundizar en el tema del rendimiento del macerado más adelante, porque hay mucho de qué hablar.

Y por último, no he hablado aquí de como estimar el volumen final del mosto con respecto al agua usada en el macerado, ya que también es material que da para otro post completo.

Historia y evolución de los sistemas de maceración

En la revista Zymurgy (panacea de jombrugüeres allá donde las haya), concretamente en su edición de Marzo/Abril de 2003, hay un artículo de Steve Alexander (de Ohio) titulado “Evolution of Mashing Systems” que relata una interesante diatriba acerca de los sistemas de maceración a lo largo de la historia. Lo que viene a continuación es una traducción de dicho artículo.

La maceración, explicada de manera simple, no es otra cosa que remojar el grano molido en agua caliente a cierta temperatura, lo que permite a los cereales liberar sus azúcares en una solución acuosa mientras que determinadas enzimas hacen su trabajo. Luego, la mezcla de agua y grano se filtra, separando la parte soluble de la insoluble, y la parte líquida (a partir de este momento, “mosto”), se hierve. Suena muy simple, pero mantener la temperatura del agua constante y bajo control, mientras la mezcla reposa y separar luego de una manera eficaz el mosto del engrudo que el grano ha formado, a la vez que evitas que todo se queme, no son, en absoluto, tareas triviales.

Todas las dificultades que envuelven este proceso han dado lugar a una sorprendente cantidad de invenciones y ensamblajes de diversos ingenios a lo largo de la historia de la elaboración de cerveza. Algunos sistemas de elaboración caseros han sido adaptados a partir de diseños comerciales —tanto modernos como históricos— mientras que otros son invenciones exclusivamente dedicadas a la cervecería casera. Para comenzar nuestro repaso a los sistemas de maceración y filtrado, vamos a echar un vistazo a la historia de la fabricación de cerveza destinada a la comercialización antes de pasar a examinar el panorama actual de los sistemas caseros.

Sistemas de maceración históricos

Históricamente, la maceración, antes de que se inventara el termómetro, avanzó en dos direcciones diferentes. Los macerados mediante decocciones tomaban partes de la mezcla de grano y agua para conseguir escalones de temperaturas más o menos fijos. Los macerados por infusión usaban cuidadosas observaciones del agua para estimar la temperatura. En el macerado por decocción, se requerían unos cuantos escalones de temperatura y largos hervidos porque las maltas antiguas se usaban con sólo seis o siete días desde que se remojaba la cebada hasta que se secaba al horno [2]. Hoy en días las maltas son muy diferentes, pero los métodos persisten. Los macerados escalonados, que son infusiones con descansos a varias temperaturas, se convirtieron en la práctica habitual después de que los termómetros permitieran la adición controlada de calor al macerado.

Las primeras referencias al filtrado mencionan el uso de cucharas con ranuras, tamices y telas filtrantes. Los sistemas antiguos de filtrado eran, sin lugar a dudas, muy simples, puesto que la claridad de la cerveza no era una seña de calidad de la misma, y no empezó a apreciarse hasta 1880 [1]. Los filtrados insuficientes, con exceso de turbidez, provocan altos niveles de lípidos que redundan en malos sabores y la pérdida de espuma. Los métodos “modernos” de filtrado consistentes en colocar un placa perforada aparecieron un poco antes de 1850. Los filtros que usaban tubos perforados en la parte inferior de la cuba datan de la misma época. Las cáscaras de la cebada y del resto de los granos molidos usados en el macerado, formaban un filtro natural y, por tanto, constituían el filtro verdadero, mientras que los accesorios mecánicos son solo un apoyo permeable a esta tarea.

Los filtros-maceradores combinados (mash-lauter tuns) se diseñaban con un doble fondo que se encontraban a unos cinco centímetros del fondo real. El agua caliente ocupaba el espacio del falso fondo, luego empapaba la mezcla de grano y rellenaba el resto del macerador de modo que se alcanzara la temperatura correcta. Sin embargo, manejar un macerado con diferentes escalones de temperaturas en estos filtros-maceradores no era una tarea simple. La relación habitual entre el agua y la cantidad de grano (2,6:1) impedía que se pudiera calentar mediante tubos de vapor puesto que no había uniformidad de temperatura y las partes pegadas a los tubos entraban en ebullición. Una alternativa era añadir agua caliente por debajo del falso fondo, o inyectar vapor directamente a la mezcla de grano y agua para aumentar la temperatura e ir cumpliendo con los escalones planeados. Estos filtros-maceradores permitían hacer un lavado del grano directamente, lo que evitaba trasiegos innecesarios. Es curioso que, dejando de lado los instrumentos de medición modernos, los sistemas de control de temperatura y limpieza automatizados de los filtros-maceradores de hoy, todas las características básicas quedaron establecidas hacia la mitad del siglo XIX.

Los equipos ideados para los macerados que incluían decocciones, solían requerir de una olla de cocción separada para las decocción, el macerador, cuba de filtrado y la olla para calentar y almacenar el agua (conocida en inglés como Hot Liquor Tank, o HLT) además de la olla de hervido habitual [4]. En Alemania, los maceradores más antiguos incluían un sistema de adición de calor por vapor en el fondo de la cuba y un removedor del grano. Las implementaciones más recientes incluyeron un sistema de calentamiento interno a vapor. Los equipos de decocción se podían usar para elaborar cervezas que necesitasen de escalones de temperaturas, aunque no necesitaran de decocción propiamente dicha. La olla de cocción para decocciones se construía de manera similar, usando serpentines o camisas a vapor. En definitiva, la olla para decocciones no es muy diferente de los filtros-maceradores diseñados para las maceraciones por infusión e igual que estos, no han variado demasiado desde el siglo XIX, a excepción de la instrumentación moderna.

Otro desarrollo del filtrado del mosto fue el uso de telas enmarcadas que hacían las veces de filtros. Aunque dichos filtros rudimentarios, que solían ser de algodón (y más tarde, de plástico) requerían de reemplazos constantes y esfuerzos considerables para mantenerlos en condiciones, eran eficaces, compactos y las cervezas resultantes eran mucho más claras que las que se elaboraban sin dichos filtros. Igual os sorprenderíais si supierais que algunas de las fábricas cerveceras más conocidas y grandes del mundo siguen usando sistemas de filtración similares a estos hoy en día.

Los sistemas básicos de macerado en la cervecería casera: RIMS, HERMS, DIMS

Si hablamos de cervecería casera (¡jombrugüin!), la mecanización de los equipos ha ido avanzando lentamente y las publicaciones sobre esta afición, de principios de la década de los noventa, ya hablaban sobre el uso de sacos de tela para filtrar la cerveza y otras técnicas primitivas de elaboración. El clásico de Charlie Papazian, The Complete Joy of Home Brewing [3], publicado en 1984, recogía el incipiente interés en la cervecería casera y aportó algunas innovaciones a los aficionados. Por ejemplo, el uso de una nevera de campin como un macerador con aislamiento, o el macerador Zapap (o Papazap, jugando con el nombre del autor del libro), que es un macerador con falso fondo eficaz y barato. Aquel libro jugó un papel fundamental en el avance de la cervecería casera para los primeros cerveceros caseros en los Estados Unidos, y aún hoy es un manual de referencia para quien empieza en la afición.

El jombrugüin aumentó aún más su popularidad a finales de la década de los ochenta y a principios de los noventa, lo que trajo un nuevo impulso de nuevos cerveceros cuyas inquietudes fueron más allá de los juguetes típicos de aquella época, y que buscaron medios más avanzados para la elaboración de cerveza. El Papazap (o Zapap) dio paso a tubos con ranuras que hacían las veces de colectores de mosto, y aparecieron falsos fondos desmontables de acero y de plástico resistente al calor, así como diferentes tipos de invenciones ingeniosas para separar el mosto del grano. Las neveras de campin siguen apareciendo como una opción válida y práctica, pero cada vez más proliferaron las ollas grandes, muchas veces hechas a partir de barriles de cerveza reconvertidos, a los que se le aplicaba calor directo por medio de quemadores de propano. Estos inventos se convirtieron en la tendencia de todos los cerveceros caseros, y eran los temas más comentados en los foros de internet, que también empezaron a surgir en la misma época. Las últimas preferencias son el uso de grandes ollas de aluminio, usuales en los restaurantes, en lugar de los consabidos barriles de cerveza. Uno de los factores de diseño que movilizaron a muchos jombrugüeres fue el de aumentar el tamaño del lote, a más de 50 litros.

En algún momento mientras se comentaban las mejores maneras de adecuar los equipos caseros a las necesidades del momento, alguien se dio cuenta que todas las piezas necesarias para hacer un sistema de tres cuerpos de maceración por infusión en miniatura eran fácilmente accesibles para el público en general. El sistema de tres cuerpos tendría, como elemento superior, una olla donde calentar el agua para luego trasvasarla al macerador propiamente dicho, e incluso, calentar agua para hacer el lavado por aspersión en el momento oportuno. En el medio tendríamos una olla adaptada para macerar y filtrar el mosto del grano y en la parte más inferior, la olla de cocción.

Este sistema típico recuerda al diseño clásico de las fábricas de cerveza, en los cuales la gravedad permite que los líquidos fluyan con libertad de una parte a otra. Una vez que el agua fría esté en la olla para calentar (una manguera soluciona cualquier problema para esto), la gravedad hace el resto, con la posible excepción de pequeñas cantidades de mosto usados para la recirculación. Muchos de estos sistemas de tres cuerpos usan un filtro-macerador con un falso fondo y un quemador que aplica calor directo para lograr los escalones de temperatura requeridos. Esta tipo de filtros-maceradores tienen que manejarse con cuidado para que la parte del mosto que hay por debajo del falso fondo no se mezcle libremente con la parte de arriba, y que pequeñas partículas de grano caigan al fondo, ya que pueden quemarse.

El RIMS

RIMS es el acrónimo de Recirculating Infusion Mash System (Sistema de Macerado por Infusión Recirculado, lo que vendría a ser… ¡SMIR!), y supuso una nueva era en la cuestión de los equipos cerveceros caseros (ver dibujo más abajo). El mérito es de Rodney Morris, que lo mencionó por primera vez en un artículo de la revista Zymurgy [5] en 1988 y que describió con detalle en el número especial de 1992 titulado “Gadgets” [6]. Lo más sorprendente del RIMS es la cantidad de características nuevas que aportaba. El diseño de un sistema tipo RIMS se parece a un sistema tradicional de macerado de tres cuerpos, con la olla para calentar agua (en inglés, como ya hemos dicho, HLT, siglas de Hot Liquor Tank), una olla de hervido y un filtro-macerador convencional. Lo interesante es que su configuración permite que durante el macerado, se recircule el mosto de forma continuada mediante bombeo, y calentado por una resistencia eléctrica. Esta resistencia mantiene la temperatura de macerado y en caso de necesitarse, puede elevarse la temperatura para hacer diferentes escalones de maceración. El mosto saldría por la parte inferior del filtro-macerador y es reintroducido por la parte de arriba.

RIMSComo la fuente de calor es eléctrica, es muy fácil acoplar controles automáticos, por lo que el diseño puede incluir medidores de temperatura y circuitos de control. Debido a que el RIMS recircula el mosto a través de la cama de grano, se produce un recirculado/filtrado continuo, y para empezar a recoger el mosto en la olla de hervido, sólo habría que poner llaves de paso para dirigir el flujo del mosto en una dirección o en otra. Cuando empecemos a hacer esto, empezamos también a lavar el grano. El uso de una bomba elimina la necesidad de configurar el equipo para que el trasvase del macerador a la olla de hervido sea por gravedad, así que solo serían necesarios dos niveles de altura.

Mucha gente se preocupa porque creen que el sistema RIMS puede desnaturalizar las enzimas o extraer taninos de las cáscaras de los granos, pero en la práctica, son temores infundados. Lo peor que puede ocurrir con este sistema es que no es sencillo de manejar si queremos elaborar lotes muy grandes, puesto que requiere un montón de energía eléctrica. Otro inconveniente es que hay que poner atención para evitar una compactación del grano que impida el libre flujo del mosto. Para hacer esto, podemos restringir un poco el flujo o usando un recolector de mosto intermedio entre el filtro/macerador y la bomba. Otro problema es que al aplicar calor, se queme una parte del grano. A su favor, tenemos que el RIMS es casi automático, y puedes establecer escalones de temperatura complejos sin casi tener que prestar atención al proceso, y como resultado de la recirculación continua, el mosto queda extremadamente limpio.

El HERMS

El HERMS es el acrónimo de Heat Exchange Recirculating Mash System, o Sistema de Macerado Recirculado por Intercambio de Calor, y surgió como una simplificación del RIMS, una década más tarde (ver dibujo más abajo). Es parecido al RIMS, salvo que la resistencia eléctrica es reemplazada por un intercambiador de calor y una válvula de bypass para controlar la temperatura. Lo más típico es usar un serpentín, similar al que se usa para el enfriado del mosto por inmersión, dentro de la olla para calentar el agua, que hará las funciones de intercambiador de calor. Este sistema puede ser controlado electrónicamente, y al activarse, una válvula deriva el mosto al intercambiador de calor, aumentando su temperatura. En el HERMS no hay, entonces, ningún riesgo de quemar la malta como sí lo había en el RIMS, y el diseño tipo HERMS puede usarse para elaborar lotes de gran tamaño. Una mejora sustancial en esta configuración sería incluir un agitador en la olla de calentar el agua para lograr una buena transferencia de calor en el intercambiador.

HERMSEl DIMS

Existe otra variante, conocida como DIMS, de Drop In Manifold System (se podría traducir como “Sistema de Colector Removible”, pero no es literal), un sistema de reciente desarrollo (“reciente” en 2003, claro…) en el que se elimina el falso fondo típico de los filtros-maceradores. En su lugar, se emplea una tubería ranurada que se coloca en el fondo del macerador en el momento de clarificar el mosto (ver dibujo más abajo). Este sistema aprovecha la circunstancia de que un colector, a diferencia de un falso fondo, se puede poner en el macerador en el momento oportuno, para convertirlo, inmediatamente, en el típico filtro/macerador.

A diferencia de los otros sistemas que usan un filtro/macerador, el DIMS puede ser calentado aplicando calor directo, siempre y cuando se disponga de un agitador para evitar que se queme el grano. Después del mashout se retira el agitador y se instala el colector con una bomba en el fondo del macerador. El filtrado se lleva a cabo igual que en sistema RIMS.

(Mashout es el término inglés que usan los cerveceros para denominar a la etapa de subir la temperatura del macerado a 76-77 °C antes del filtrado, con el objetivo de parar las acciones enzimáticas en el mosto y así preservar el perfil de azúcares fermentables que has desarrollado durante el macerado, y que conlleva el efecto secundario positivo de hacer el mosto más fluido, aunque según John Palmer, en macerados con un ratio agua:grano de 3:1 o 4:1, este paso no es necesario).

El sistema DIMS tiene menos opciones de ser manejado de manera automatizada, pero reduce el riesgo de quemar el grano que existe cuando aplicamos calor directo en un filtro-macerador convención con falso fondo. El DIMS también proporciona mostos con la misma buena claridad que el RIMS y el HERMS, y puede ser fácilmente dimensionado para elaborar lotes grandes de cerveza. Una característica única para los equipos DIMS es que permite al cervecero bombear una parte del mosto a un recipiente independiente, retirar el colector y hacer un hervido de la parte principal del macerado (decocción) directamente en el macerador. Si se utilizan componentes aptos para aguantar altas temperaturas, el equipo DIMS también puede usarse para filtrar lúpulos en flor y el resto de sólidos resultantes del hervido del mosto.

DIMS

Variantes

Los cerveceros caseros han creado muchos sistemas que en realidad son variantes de los tres que ya hemos comentado, como por ejemplo, RIMS que usan fuentes alternativas de calor, HERMS que tienen diferentes diseños en el intercambiador de calor y sistemas que controlan el bombeo del mosto en lugar de la intensidad de la fuente de calor… pero en lugar de enumerar todos los sistemas existentes posibles, lo mejor es fijarse en las características principales que pueden incluirse o eliminarse del diseño del equipo de maceración.

¿Qué hacer para no quemar el grano?

El problema más crítico en la mayoría de los equipos es la necesidad de evitar quemar el grano cuando calentamos la mezcla de macerado, lo que ocurre cuando los azúcares o almidones se calientan a temperaturas de alrededor de 250 °C. Como a esta temperatura los hidratos de carbono cambian de estructura, se chamuscan, carbonizándose y echando a perder la cerveza aportando un sabor a quemado que no se puede enmascarar. Teniendo en cuenta las altas temperaturas que son necesarias para que esto suceda y el hecho de que el líquido de macerado no sube más allá del punto de ebullición, puede resultar que parezca imposible que llegue a pasar, pero pasa. El grano se quema cuando se estancan restos sólidos en algún punto del macerado (por ejemplo, por debajo del falso fondo) o los azúcares más grandes alcanzan temperaturas muy altas cerca de la fuente de calor. Si el macerado se remueve poco (o no se remueve), el flujo de la bomba es insuficiente o la propia convección natural no es vigorosa, sumado a si la fuente de calor es potente y focaliza esa potencia en un área pequeña, es más que probable que quememos el grano.

Por ejemplo, la superficie de calentamiento de la resistencia eléctrica en el RIMS es muy pequeña, por lo que el mosto tiene que fluir rápido para evitar quemar partículas del grano. El fuego directo en las ollas puede quemar los granos si el material del que está hecho es fino o tiene una baja conductividad del calor, ya que eso provocaría que los puntos de más calor de la llama transmitieran el calor directamente a puntos localizados en el interior de la olla. El acero inoxidable es un conductor lento del calor, por lo que si la olla tiene un fondo delgado, hay que tener cuidado porque es probable quemar el grano. Las ollas más gruesas fabricadas en materiales que son buenos conductores térmicos, como el CONVECCIÓNaluminio o el cobre, se calientan de una manera más uniforme. La convección natural que tiene lugar en los líquidos en ebullición ayuda a reducir los problemas de puntos localizados de calor, gracias a la constante mezcla del líquido. Cualquier cosa añadida al fluido, incluyendo el grano molido y un falso fondo o colector, reduce la convección y favorece la creación de puntos de calor localizados, que pueden provocar la carbonización del grano. La inyección de vapor o el uso de intercambiadores de calor por vapor (o agua caliente) evitan que el grano se queme, porque trabajan a temperaturas muy por debajo de la necesaria para quemar el grano.

Velocidad de calentamiento

La velocidad en que podemos saltar de un escalón de temperatura a otro determina tanto el tiempo de elaboración como las propiedades del mosto. Un macerado puede ser calentado lentamente (digamos, por ejemplo, a 1 °C por minuto), pero cuando elaboramos con maltas bien modificadas (es decir, cualquier malta moderna y comercial de calidad), hay que calentar al menos a 2 °C por minuto para prevenir un exceso de formación de espuma y pérdida de cuerpo. Esto plantea la cuestión de cuanta energía calorífica es necesaria. Para calentar a 2 °C por minuto unos 19-20 litros de un mosto basado de una cerveza con densidad alta, hacen falta 4.600 vatios de potencia eléctrica o una llama con 32.000 BTu/hora [¿qué es un BTu?]. Si la velocidad de 1 °C por minuto es aceptable, entonces la energía necesaria se reduce a la mitad. Está claro que los quemadores de gas natural y propano, que proporcionan más de 100.000 BTU/hora, son capaces de suministrar la energía suficiente a los equipos más grandes de jombrugüin, a pesar de sus deficiencias. Las resistencias eléctricas son muy prácticas para equipos RIMS de unos 20 litros, pero los equipos más grandes requieren cantidades exageradas de electricidad para conseguir velocidades de calentamiento satisfactorias para la mayoría de las recetas que requieran escalones de temperaturas. Los intercambiadores de calor y los inyectores de vapor no transfieren el 100% de su energía, pero estos sistemas sí se pueden dimensionar a tamaños de lotes más grandes.

Dispositivos de filtrado

Los dispositivos de filtrado más usados en la cervecería casera incluyen placas perforadas, colectores de tubos ranurados, diferentes tipos de mallas e ingenios parecidos. Todos pueden ser eficientes y eficaces en su tarea de separar el mosto del grano. Varios artículos de la revista Zymurgy escritos por John Palmer [7] revisan las propiedades y el uso de estos elementos, y por supuesto su libro How to Brew [8] contiene los análisis más avanzados de los elementos de filtrado más comunes. Los falsos fondos parecen ser la mejor opción para un filtrado eficiente, pero los colectores construidos de una manera adecuada pueden conseguir resultados respetables.

Para acabar: moviendo el mosto

El uso de las bombas para recircular el mosto mejora de forma significativa la claridad de la cerveza durante el filtrado y te libera de ser un esclavo de la gravedad, pudiendo configurar tu equipo sin engorrosos escalones de alturas. La bomba ideal para el macerado tiene que estar certificada para uso alimentario (elemental), tiene que poder trabajar a altas temperaturas sin que se estropee a la primera de cambio, tienen que ser autocebantes y tienen que evitar la cavitación o aspiraciones en vacío. Por desgracia, estas clases de bombas son caras y difíciles de encontrar, y lo normal es que su calidad no sea adecuada. La mayoría de las bombas usadas en la cervecería casera carecen de la función de auto-cebado, por lo que hay que jugar con la gravedad o el ingenio para iniciar el flujo de entrada de líquido.

Los sistemas que hemos comentado en este artículo son diferentes entre sí y todos tienen ventajas y desventajas: unos son más propensos a la automatización que otros, algunos limitan el tamaño del lote a elaborar, unos son más caros que otros… Y es obvio que hay muchas variaciones que podemos hacer partiendo de estos diseños básicos. Antes de decidirte por el sistema que vas a construir, tienes que tener en cuenta las ventajas y desventajas, y cómo se ajusta cada uno de los sistemas a tus necesidades y pretensiones.

Referencias

[1] Briggs, Hough, Stevens and Young. “Malting and Brewing Science. Vol. 1”, Chapman & Hall: 1981.
[2] J. Brachvogel. “Industrial Alcohol Production”. Munn and Co.: 1907
[3] Chalie Papazian. “The Complete Joy of Home Brewing”. Avon Books: 1984
[4] W. Kunze. “Technology Brewing and Malting”. VLB-Berlin: 1996
[5] George F. Ashley. “Profile: Rodney Morris”, Zymurgy, Vol. 11, No. 4, pp. 22-25, 1988.
[6] Rodney Morris. “Recirculating Infusion Mash System Revisited.” Zymurgy, Vol. 15, No. 4, pp. 49-54, 1992.
[7] John Palmer. “How to Build a Mash/Lauter Tun”. Zymurgy, Vol 25, No. 2, 2002.
[8] John Palmer. “How to Brew”. Defenestrative Press: 2001

Oda al BIAB

Recientemente, estoy volcado en una iniciativa de divulgación acerca de la elaboración de cerveza, de la que daré detalles cuando esté más avanzada. No obstante, planificar cómo enseñar a hacer cerveza a alguien que no la ha hecho nunca y está interesado, tiene un objetivo extra a tener en cuenta: que no huya espantado a la primera de cambio ante la visión de tanta cacharrería necesaria y monstruosa. Hacer cerveza, no lo neguemos, es realmente complicado por las variables que entran en juego, la cantidad de campos de conocimiento y actuación en los que estás envuelto, pero también puede ser muy fácil si eliminas riesgos, simplificas (obvias) procedimientos y tomas las medidas adecuadas. Para complicarse siempre hay tiempo, y lo importante al iniciar una afición es que sea amena y fructífera.

En un principio, pensé que enseñar a hacer cerveza en un macerador tipo Papazap iba a ser una muy buena idea. Total, todo el mundo tiene acceso a un cubo grande y hacerle tres millones de agujeritos al fondo no es demasiado complicado, y me fabriqué mi propio Papazap, al que consideraba como un pequeño “paso atrás”, porque el Tar-Sparger (nombre que le damos al macerador en nevera de camping fabricado por mi compañero de fatigas, conocido en el wideworld como Tàrdon) es un elemento fundamental y efectivo en nuestras elaboraciones. Sin embargo, tras 2 horas haciendo agujeritos en el cubo, en una conversación con otros cerveceros de pro discutiendo la sencillez de los métodos de elaboraciones, salió a relucir el método BIAB. No tardaron en convencerme de que para el novato, este método es el mejor, y que, como ya hemos dicho, ya habrá tiempo de complicarse más adelante.

Un par de días más tarde, me encuentro con esta entrada de Cerveza de Garaje [¡plink!] aludiendo exactamente al mismo tema de la conversación que relataba antes. ¡Serendipia! Parece como si el espíritu de hacer las cosas de la manera más simple posible haya despertado de repente.

Conocía perfectamente en qué consistía el método BIAB, aunque no lo haya usado nunca previamente, y me lancé a la búsqueda de información complementaria para reafirmar las ventajas del método en cuestión, y recordaba haber leído algo hace tiempo en la Zymurgy. Cuando encontré el artículo, me quedé muy contento con la argumentación y la defensa del método, pero sobre todo, me agradó sobremanera que fuera escrito por Brad Smith (sí, el de BeerSmith).

Así que como esta información va estrechamente ligada a mi “otro” proyecto cervecero en el que estoy envuelto ahora mismo, he decidido emplear unos minutos en escribir este post, basándome en el artículo “Brew in a bag” publicado en la edición de Enero/Febrero de 2013 de la mencionada revista, por el mencionado autor.

Es muy fácil estancarse en nuestras manías —incluso cuando hablamos de elaboración de cerveza en casa. Muchos jombrigüeres empiezan a elaborar cervezas con extractos y luego dan el paso a todo-grano. Y tras elaborar un tiempo con un equipo de tamaño medio, si tienen la posibilidad, instalan un equipo de tres cuerpos (olla de calentar agua + macerador + olla de hervido con trasiegos por gravedad o con bombas de impulsión de líquidos), y cuando llegan ahí, no se separan de su equipo por nada del mundo.

Hace algunos años, Brad Smith empezó a investigar el método BIAB con la intención de documentarse para un artículo, y se dio cuenta de que era la manera más barata de introducirse en el método todo-grano. El procedimiento de elaboración, además, es más simple que el tradicional, y que es más rápido ya que acorta (o anula) algunas fases y ahorra tiempo. Así que con todos esos argumentos se decidió a probarlo por él mismo. Como nota curiosa, se conoce el hecho de que en los concursos nacionales tanto de Australia como de Nueva Zelanda, donde el BIAB es muy popular, han sido galardonadas muchas cervezas elaboradas usando este método de elaboración.

¿Qué es el BIAB?

Si has seguido leyendo hasta aquí (y si realmente has entrado a este blog), probablemente ya lo sepas, pero quizás sea buena idea empezar desde el principio. B.I.A.B. son las iniciales de “Brew In A Bag”, o lo que viene a ser lo mismo: “elaborar cerveza usando una bolsa”, y a falta de un nombre mejor en español, nos quedamos con el acrónimo en inglés hasta que alguna mente ocurrente encuentre un término correcto y pegadizo (se aceptan propuestas). Como veremos, es el método más simple de maceración que existe, sin perder rendimiento. La idea básica es la de usar sólo una olla, tanto para el macerado como para el hervido, así que depositamos la malta en una bolsa de tela para después retirarla de la olla y quedarnos con todo listo para el hervido, fácil y rápido. Cuando se compara con un equipo de elaboración más avanzado, es evidente que con este se ahorra dinero, ya que no hace falta usar un macerador, pero también ahorra tiempo de elaboración, ya que no hay recirculado del grano, ni compactación de cama de granos, ni lavado (aunque se puede optar por uno complementario, no del todo necesario).

El BIAB incluye dos elementos clave. En primer lugar, el proceso de elaboración se hace sólo en un único recipiente (olla grande). En segundo lugar, no se añade agua por separado como se hace en el lavado en un macerado tradicional (aunque eso se puede cambiar, siempre que tengas claro lo de jugar con volúmenes y densidades del mosto). Esto quiere decir que el macerado se hace usando el volumen total de agua que vas a requerir para el hervido, lo que viene a ser el doble o el triple que con un macerado tradicional. Si antes jugabas con ratios agua:grano de 2:1 o 3:1, es fácil irse a ratios 5:1 o 6:1 o incluso más.

Las investigaciones de Brad Smith le han llevado hasta los orígenes del BIAB (en tiempos modernos, se entiende), hasta una discusión de un blog australiano en 2006, donde un jombrigüer novato preguntaba por qué no se podía usar un mismo recipiente para macerar y para hervir, así que se decidieron a investigar y experimentar en ese sentido. La conclusión de todo esto fue que un pollo que se llama Patrick Hollingdale, fundador del sitio http://www.biabrewer.info/ expresamente dedicado al método BIAB, ratificó que el método era válido para hacer cerveza, y a un nivel de excelencia óptimo.

La idea de usar sólo una olla para macerar y para hervir no es del todo nueva. En los años setenta y al principio de los ochenta, muchos jombrigüeres pioneros (en los Estados Unidos, se entiende) usaban cubos de plástico de gran tamaño preparados para calentar agua y hacer cerveza con un único recipiente (el artículo no da más detalles de cómo hacerlo, lo cual es una pena, porque a uno le entra curiosidad acerca de cómo se puede hacer cerveza usando sólo elementos plásticos). Y por supuesto, está la evidencia histórica de que multitud de bebidas fermentadas eran elaboradas en un único recipiente, y sólo se separaban de la materia fermentable cuando la fermentación había concluido.

El equipo necesario para elaborar según el método BIAB

Cualquier olla grande, ya sea de aluminio o acero inoxidable, se podrá usar sin problemas para BIAB. Es importante, eso sí, que elijas una lo suficientemente grande como para contener el grano y todo el agua. Mucha gente cree que el aluminio no es válido para hacer cerveza, pero sí lo es (con matices en cuanto al tratamiento), aunque ya hablaremos de eso en otro post.

Vamos a tratar los cálculos de los volúmenes de agua un poco más adelante, pero una buena regla general para esto es que la olla que elijas para el BIAB tendría que ser, al menos, dos veces el tamaño del lote de cerveza que quieres elaborar, y si es más grande, mejor. Si quieres elaborar 25 litros, usa una de 50. Y si quieres elaborar cervezas de densidad muy alta, es conveniente comprar una olla incluso más grande. La verdad es que según los textos que vienen a continuación suena que la regla es un poco exagerada, pero quiero respetar la integridad del artículo.

En algún momento, puedes preguntarte cómo de pesada va a ser la bolsa que va a contener el grano, puesto que esto va a limitar el tamaño del lote… Si echamos cuentas, podemos estimar que para un lote de 25 litros de una cerveza de alta densidad va a requerir de unos 8 o 9 kilos de malta más unos 5 o 6 kilos de agua que se van a quedar atrapados en el grano. O sea, tendríamos que mover un peso de entre 13 y 14 kilos, y eso sí puede moverlo la mayoría de la gente. Si usáramos el doble de peso, mucha gente podría moverlo, pero ya presentaría dificultades serias. Y para lotes más grandes, pongamos 60 o 70 litros, vas a necesitar de un una polea o algo parecido (polipasto) para hacerte con el peso. Aun las cervezas de baja densidad, si los lotes son grandes, pueden presentar estos problemas de mover peso.

Para calentar y hervir un volumen de 25 o 30 litros de agua, no te vale cualquier vitrocerámica (no ya por poder calorífico, sino también por resistencia del peso) ni un infiernillo sencillo, necesitas el clásico paellero o quemador algo más profesional, junto con una bombona de butano o propano.

El objeto clave para este método de elaboración es la bolsa. Tiene que ser lo suficientemente recia como para soportar unos 4 o 7 kilos de grano mojado, pero lo suficientemente permeable para permitir que el agua atraviese el tejido y pueda drenarse sin problemas. El material ideal para este tipo de bolsas es la malla de poliéster, que se suele usar para hacer cortinas. Basta con comprar un par de metros de tela y fabricártela a medida para tu olla. O más fácil, las tiendas de suministros cerveceros suelen tener diferentes opciones de bolsas de este tipo. Además, son perfectamente reutilizables.

El resto del equipo (enfriador, fermentador, accesorios de embotellado, etc…) es el mismo que ya tendría cualquier elaborador.

El BIAB paso a paso

  1. Calcula la cantidad de agua que necesitas y caliéntala hasta alcanzar la temperatura adecuada para que cuando adiciones el grano, se compense hasta la temperatura de macerado objetivo. Apaga el fuego.
  2. Pon la bolsa con el grano molido en el agua caliente.
  3. Tapa la olla y envuélvela en una manta o aislante para minimizar las pérdidas de temperatura. Remueve los granos cada cierto tiempo para evitar grumos y homogeneizar las temperaturas en el interior de la bolsa.
  4. Después de tres cuartos de hora o una hora, retira la bolsa y deja que escurra el líquido atrapado en él.
  5. Enciende el fuego de nuevo hasta que el mosto empiece a hervir. Se adicionan los lúpulos y se gestiona el hervido como en cualquier otra elaboración. Se enfría y se fermenta el mosto como lo haría cualquier otro elaborador.

El BIAB en cifras

Para elaborar cerveza usando el método BIAB, hay que hacer dos cálculos. El primero sería relativo al volumen de agua del macerado, y el segundo es la temperatura de infusión.

Para hacerlo más fácil, vamos a suponer que ya tienes más o menos claro el volumen de mosto que quieres antes de hervir, o lo que es lo mismo, la cantidad de agua que tienes que poner en tu olla de hervido. Por ejemplo, para el típico lote de 25 litros, ya tienes comprobado que pierdes unos 5 litros en el hervido, y unos 2,5 litros en el proceso de enfriado y trasiego al fermentador, así que partimos de que necesitaremos 25 + 5 + 2,5 = 32,5 litros de agua.

Sabiendo esto, para concretar el agua que necesitamos para el macerado, hay que tener en cuenta la cantidad de agua absorbida por el grano. El cálculo que se suele hacer para obtener este dato en este método de maceración, suele ser de 0,6 litros/kg de grano, lo que viene a ser un 40% menos que un macerado convencional. Si añadimos este volumen de agua al cálculo anterior (que variará en función de la receta, ya que cambiará la cantidad de grano a macerar), tendremos el volumen total de agua para el macerado.

En el ejemplo anterior, supongamos que vamos a hacer un macerado con 5 kg de grano, teniendo en cuenta que van a quedare atrapados 3 litros de agua (5 kg x 0,6 litros), tendremos que habría que poner 32,5 + 3 = 35,5 litros de agua en la olla para macerar.

Cuando ya sabemos este dato, el siguiente paso sería determinar la temperatura de infusión que necesitamos, o dicho de otro modo: la temperatura a la que tenemos que calentar el agua antes de mezclarla con el grano, y suele rondar entre los 5 y 8 grados por encima de tu temperatura objetivo.

La ecuación correcta es demasiado complicada para desarrollarla aquí (por ahora), así que la forma más rápida de hacerlo es usar alguna aplicación informática (suelen estar on-line) para calcular la temperatura correcta de la forma más exacta. Como casi siempre estas aplicaciones están en inglés, haz una búsqueda por “Strike Water Calculator” y encontrarás algunas opciones. Para un macerado simple, tu temperatura objetivo rondará los 66-68 °C, aunque va a depender de la receta, y casi siempre tendrás que calentar el agua entre 5 y 8 grados más para compensar la pérdida de calor al mezclar el agua con el grano.

Los mitos (falsos) del BIAB

Mucha gente no es partidaria del BIAB, y en internet se han extendido algunos mitos acerca de este método de macerado que no son ciertos. Habría que pararse a pensar si estos bulos son la causa de que haya mucha gente que no sea partidaria del BIAB, o que la gente que no es partidaria del BIAB se justifiquen a sí mismos hablando mal sin fundamento de este procedimiento. Muchos creen que el rendimiento del grano va a ser peor que usando un macerado tradicional porque al aumentar el volumen de agua en el macerado eso va a dificultar la conversión de los almidones. Otros se quejan de que las cervezas que elaboras macerando por BIAB serán demasiado flojas y no tendrán apenas cuerpo. Y otros, simplemente opinan que al escurrir la bolsa de grano vas a liberar taninos que provocarán astringencia en la cerveza final. Así que repasemos estos mitos uno por uno.

La preocupación más extendida sobre el BIAB es que al trabajar con un volumen de agua muy superior a un macerado normal, lo cual es cierto, ya que trabajas con el volumen total de agua a hervir, el rendimiento del grano va a ser más bajo y tendrás una conversión de almidones no adecuada, por lo que tendrás que aumentar la cantidad de malta para macerar.

Sin embargo, en realidad, la mayoría de los fabricantes de cerveza que han cambiado a BIAB reportan un rendimiento igual e incluso superior en algunos casos a sus rendimientos con su anterior equipamiento. ¿Cómo puede ocurrir esto?

Resulta que los macerados realizados con un volumen de agua mayor a los tradicionales ratios de 2:1 o 3:1, producen más maltosa (según Gregory Noonan en su libro “New Brewing Lager Beer”) y tienen una tasa de conversión un poco más alta que la de un macerado tradicional. Además, el volumen total del mosto está en contacto desde el principio de la elaboración con el grano, lo que provoca una mejor extracción que cuando hacemos que el agua circule a través de la cama de granos. Eso es por lo que el BIAB puede ser, en algunos casos, más eficiente, y en la mayoría de los casos la conversión del almidón va a ser mejor que en un macerado tradicional. De hecho, las cervecerías alemanas han estado haciendo decocciones con unos ratios muy altos de agua por grano durante cientos de años sin efectos negativos.

Y otro punto a tener en cuenta es que puedes hacer una molienda más fina que para macerar el grano en un macerador tradicional, ya que aquí no hay que temer a los atascos. De hecho, muchos cerveceros que usan el BIAB para sus macerados muelen dos veces sus granos, aumentado el rendimiento del mismo.

El segundo mito más extendido es que las cervezas elaboradas a partir de este método son que son más flojas y que no tienen cuerpo. Como ya hemos visto en el bulo anterior, al haber un ratio agua:grano muy alto (es decir, mucha agua, poco grano), hay una conversión más efectiva de maltosa, y la maltosa es más fermentable que otros azúcares más complejos que se quedan en el mosto. Por lo que, en teoría, gracias a este punto la fermentación puede tener mayor atenuación [¡plink!] y terminar con una densidad final un poco más baja.

En la práctica, esta diferencia no es percibida por el consumidor medio. Varios experimentos en Australia han jugado con catas ciegas de la misma receta, pero unas elaboradas por el método BIAB y otras, por el método tradicional. E incluso jueces verdaderamente experimentados no supieron diferenciar unas de otras. Además, si quisieras evitar una producción de maltosa excesiva, tienes herramientas fáciles para evitarlo: sube un poco la temperatura de macerado (conseguirás un mosto menos fermentable) o juega con maltas más dextrinosas, como la CaraPils, para compensar.

El mito que nos queda por comentar es que la gente suele preocuparse porque al retirar la bolsa con grano del mosto al final del macerado, sin haber formado una cama de cereal de la forma adecuada y tradicional, el resultado pudiera ser un contenido excesivo de taninos en la cerveza, lo que derivaría en una sensación desagradable de astringencia al beber la cerveza. Los más críticos apuntan que esto puede ocurrir si estrujas mucho la bolsa para liberar el líquido que queda atrapado en el grano.

Obviamente, una selección adecuada de la bolsa con la que hacer el BIAB es fundamental. Necesitas una bolsa de tejido lo suficientemente fino como para liberar los azúcares, pero a la vez, atrapar el grano para que no se quede en el mosto. Sin embargo, asumiendo que incluso el material de la bolsa no sea el mejor y que haya dejado pasar algún resto de grano al mosto, la preocupación por la astringencia es más mito que realidad. Algunas famosas fábricas de cerveza usan molinos muy potentes que destrozan los granos casi (y sin el casi) a harina y no tienen problemas de liberación de taninos.

De hecho, una gestión del pH del agua incorrecta (esto es, un pH demasiado alto durante el macerado) y un lavado con agua a temperaturas demasiado altas son las principales causas de la astringencia en la cerveza final. Y conseguir un pH correcto en el macerado es una tarea importante tanto para los cerveceros que usan BIAB como para los que usan métodos más tradicionales (Brad dice que deberían apuntar a 5,2 para un macerado óptimo, pero cuando hablemos del agua veremos que es aceptable un rango más amplio, que va de 5,2 a 5,8 o de 5,3 a 5,6 según la publicación). Las formas más usuales que el autor recomienda en el artículo para ajustar el pH es la de añadir granos oscuros, malta acidificada, ácidos o cualquier otra sustancia estabilizadora (y de carácter alimentario), pero eso es material para otro post. Volviendo al problema de la astringencia, como no vas a hacer lavado (y menos, con agua excesivamente caliente), no tienes por qué preocuparte por esto en el BIAB.

RESUMEN

Brad Smith reconoce que sigue elaborando cervezas con su equipo habitual, pero que ha empezado a usar el método BIAB para otro tipo de elaboraciones y que así se ahorra más de una hora cada vez que se pone al lío. Según sus experiencias más recientes, estas son las ventajas y desventajas que ve en este método:

  • Es ideal para iniciarse en el todo grano, por su bajo coste y su fácil manejo.
  • Ahorra tiempo al eliminar el recirculado y el lavado del grano, y también menos limpieza.
  • Consigues un buen rendimiento, una buena conversión del almidón y al final, buena cerveza.
  • Mayor seguridad, ya que no mueves ollas llenas de líquido a altas temperaturas.
  • Tienes todas las posibilidades y flexibilidad que ofrecen las elaboraciones todo-grano.
  • Como única desventaja, requiere una olla muy grande, especialmente para cervezas de mucha densidad.

Aunque conviene centrarse es que el mejor método tanto para iniciarse como para hacer lotes de cerveza de hasta 25 o 30 litros. Si quieres hacer lotes más grandes, como ya se ha dicho más arriba, el volumen de grano a meter en la bolsa empieza a ser preocupante, y necesitarás artilugios para mover el peso, por lo que este método empieza a perder atractivo. Obviando este punto, ya que no todo el mundo quiere hacer 100 o 200 litros nada más empezar (algún loco hay, ya se sabe que en la viña del Señor no todos los trabajadores son igual de productivos), se convierte en el método número 1 en la lista de métodos recomendables, así que si conoces a alguien que quiera dar el salto de elaboración con extractos al todo-grano sin tener que invertir dinero en un equipo muy avanzado, el camino a seguir es el BIAB.

Con una olla grande, un paellero a gas y poca cosa más, cualquier jombrigüer puede elaborar de manera fácil en todo-grano. Incluso para cerveceros experimentados que no lo hayan tenido en cuenta, el BIAB ofrece un ahorro sustancial de tiempo de elaboración.